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Video 1

1. Preliminary material

2. Quantifier eliminiation and decision procedures in atomless BA.

3. NSO (Nullary second order logic)

4. Guarded Successor

5. Applications

Prereqs:

1. You need to know what is a ring, and very, very basic ring theory.

2. You need to know what is a BA.

3. people mix the two-element BA with general BA. I assume that you know
the two-element BA quite well. CNF, BDD, SAT.

4. First Order Logic.

5. Temporal logics.

Video 2 - basic definitions and terminology.

1. A BR is any ring satisfying xx = x. In any BR, x+ x = 0

(x+ x) (x+ x) = x+ x

x+ x = 0

x = −x
any BR is commutative:

(x+ y) (x+ y) = x+ y

xy = −yx
xy = yx
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2. Ring has the signature (·,+, 0, 1). BA, as you know, has the signature
(∩,∪,′ ). Any BR is a BA and vice versa, by:

· = ∩

a ∪ b = a+ b+ ab

a′ = 1 + a

a+ b = ab′ ∪ a′b

3. a BF is [multivariate] polynomial function over a BR. in ANF (algebraic
normal form):

f (x) = ax+ b

4. SBF is a BF where all constants appearing in it are either 0 or 1.

5. Boole’s normal form, or decomposition, Shannon’s decomposition (mis-
takingly),

f (x) = ax+ bx′

= ax ∪ bx′

= xf (1) ∪ x′f (0)

disjoint union is same as disjoint symdiff.

6. Minterm normal form: a minterm is of the form XA =
∏

i x
ai
i where

x1 = x and x0 = x′.
xyz

xy′z

xy′z′

any two different minterms are disjoint.

f (X) =
⋃

A∈2n

f (A)XA

as a conclusion, any BF is fully determined by its values on 0, 1.

f (x) = {1, 2} ∩ x

1 ≡ N

f (1) = {1, 2}
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Video 3: Zeros
f (x) = ax ∪ bx′ = 0

f (x) = 0 ↔ b ≤ x ≤ a′

a = f (1)

b = f (0)

x ≤ y ↔ xy′ = 0 ↔ xy = x

in partular, a zero exists, iff b ≤ a′ alternatively iff ab = 0 iff f (0) f (1) = 0.
Boole’s consistency condition.[

0 =
∏

A∈2n

f (A)

]
↔ ∃X.f (X) = 0

if an SBF has a zero in one BA, then it has a zero in all BAs.
General Reproductive Solution. given f (x) and assume it has a zero. define

g (x) = x+ f (x).

1. the range of g is precisely all zeros of f .

(a) if f (x) = 0 then x is in the range of g. g (x) = x+ f (x) = x

(b) f (g (x)) = 0

f (x+ f (x)) = f (g (x)) = abx′ + abx = 0

2. all zeros of f are fixed-points of g.

Video 4: Systems of Equations and Inequations

1. A [finite] set of BFs over atomless BA has a common nonzero iff none of
the BFs is identically zero.[

∃X.
∧
i

gi (X) ̸= 0

]
↔

[∧
i

∃X.gi (X) ̸= 0

]

2. Rudeanu’s terminology. “Boolean functions and equations”. Elementary
GSBE ∧

i

fi (X) = 0

∧
i

gi (X) ̸= 0

3. “squeeze the positives”.
f (X) = 0∧
i

gi (X) ̸= 0

f (X) = 0 ∧ h (X) = 0 ↔ f (X) ∪ g (X) = 0
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4. wlog, consider the univariate case

∃x.

f (x) = 0∧
i

gi (x) ̸= 0

f (0) f (1) = 0

∃x.
∧
i

gi (x+ f (x)) ̸= 0

f (0) f (1) = 0∧
i

gi (f (0)) ∪ gi (f ′ (1)) ̸= 0

f (0) f (1) = 0∧
i

∃x.f ′ (x) gi (x) ̸= 0

∧
i

f ′ (0) gi (0) ∪ f ′ (1) gi (1) ̸= 0

5. qelim in the theory of BA. the “standard” theory of BA has the signature
(∩,∪,′ , 0, 1). here, we assume that the theory of BA is interpreted in
a fixed structure, and, that there is a constant symbol in the signature
interpreted in the BA, for each BA element.

Video 5: Additional properties of BFs.

1. Hall’s marriage theorem. set theoretic. “system of distinct representa-
tives”.

2. minterm normal form of formulas. so far, atomic formula in the lang of
BA, was of the form f (X) = 0. in MNT of formulas, each atomic formula
is of the form aXA = 0.

f (X) =
⋃

A∈2n

f (A)XA = 0

∧
A∈2n

f (A)XA = 0

3. justify set theoretic language. Stone’s representation theorem for Boolean
algebras: in any BA, each element can be identified with a set, while the
boolean operations are the standard set operations.
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4. Lemma: in any BA, the system

XAi ≥ bi

has a solution, iff bibj = 0 whenever Ai ̸= Aj . Necessity is immediate.
By induction on the number of variables. First assume that all Ai are
different, because if not, then

XA1 ≥ b1

XA1 ≥ b2

XA1 ≥ b1 ∪ b2
for single variable,

x ≥ b1

x′ ≥ b2

b1 ≥ b1

b1b2 = 0

for the induction step, separate a distinguished variable x, and write the
system as ∧

i∈I

xXAi ≥ bi

∧
i∈J

x′XBj ≥ cj

suppose we have an X satsifying∧
i∈I

XAi ≥ bi

∧
i∈J

XBj ≥ cj

and suppose |I| ≠ 0, set x =
⋃

i bi. then∧
i∈I

XAi

⋃
m

bm =
∧
i∈I

⋃
m

bmX
Ai ≥

∧
i∈I

biX
Ai ≥ bi

∧
i∈J

XBj

⋂
m

b′m ≥
∧
i∈J

XBjcj ≥ cj

cj ≤
⋂
m

b′m⋃
m

bmcj = 0
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5. when we have
aiX

Ai ̸= 0

aiX
Ai ≥ bi

but in atomless BA, all cardianlities are infinite.

6. for any BF f we have⋂
x

f (x) =
⋂
x

f (x) f (x′) = f (0) f (1)

f (x) f (x′) = f (0) f (1)

ax+ bx′

ax′ + bx

abx+ abx′ = ab⋃
x

f (x) = f (0) ∪ f (1)

∑
x

f (x) = f (0) + f (1)

7. tri-linearity.
f (x+ y + z) = f (x) + f (y) + f (z)

f (x) = ax+ b

f (x+ y + z) = ax+ ay + az + b

8. f (f (f (x))) = f (x).

9. weakly ω-categorical theory: an equivalent definition of ω-categorical the-
ory if the following: there are only finitely many formulas, with finitely
many fixed free variable symbols, up to logical equivalence. in weakly
ω-categorical theory, there are only finitely many formulas, with finitely
many fixed free variable symbols and constant symbols, up to logical equiv-
alence.

10. the theory of atomless BA is weakly ω-categorical: first it is enough to
consider quantifer-free formula, since we have quantifier elimination. con-
sider formulas in minterm normal form. they are boolean combination,
those are SBFs of atomic formulas. in N vars, there are 22

N

SBFs. how
many atomic formulas we can form with n variables and k constants? so
in our case, N = k2n so the final number is 22

k2n

.

cXA

k2n
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11. in weakly ω-categorical theories, we can have recurrence relations.

ϕn (x) = ∃y.ϕn−1 (y) ∧ ψ (x, y)

,
ϕ1 (x) = . . .

fn (x, y) = fn−1 (y, x) ∪ g (x)

f1 (x) = . . .

while unfolding, due to the finiteness property, there will be a loop, either
a fixed point, or a partial fixed point.

Video 6: Complexity, quantification over [higher-order] BFs (SBFs), increase
complexity.

1. Kozen. The satisfiability of a formula in the lang of ba, for infinite ba, is
complete

NEXPTIME ⊂
⋃
c>0

STA (∗, cn, n) ⊂ EXPSPACE

for finite bas, this is very simply PSPACE complete by direct reduction
QBF.

2. suppose
∃f (x, y) .f (f (x, x) , y) = f (y, f (y, x))

f (x) =
∑
A∈2n

f (A)XA

you can convert a single arity n function quantifier, into two n − 1 arity
function quantifiers: simply Boole’s decomposition

f (x,X) = xg (X) + x′h (X)

f (x,X) = xg (X) + h (X)

3. the case for higher-order BFs is completely analogous. same for SBFs.
which gives the theory of BAs of cardinalities 22

n

. all countable atomless
BAs, are isomorphic. some manifestations of those:

(a) each BA element is a finite union of left-closed right-open intervals
over the rational numbers.

(b) the BA of SBFs with unboundedly many variables.

(c) clopen sets in the Cantor set (middle third).

(d) LTA (Lindenbaum-Tarski algebras) of logics with infinite signature.
up logical equivlance.

∀x.x ̸= 0 → ∃y.0 < y < x
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4. all atomless BAs are elementarily equivalent.

5. finite model theory: model-checking finite models with a second-order
logic formula, captures the PH. afaik, no remotely good algorithms exist.
my definition of good algorithm: is an algorithm that runs fast on many
“easy” instances. so if the domain is of size n, then you need log n bits for
each element. then you can convert the model to one with domain of size
2, by increasing all arities times log n. similarly you modify the formula.
now any k-ary relation is nothing but a SBF with k log n. all is left to
be done is to encode the structure as a formula, conjunct with the input
formula, and check for satisfiability.

6. extend the theory of BA to make it able to “solve” any problem in ELE-
MENTARY, so this should be complete for a certain NONELEMENTARY
complexity class.

7. from finite model theory, we know that HOL captures ELEMENTARY.

Video 7: NSO, Nullary Second Order Logic

1. the main point, is to have a language that can speak of its own sentences.

2. fix a logic L that makes a countable atomless LTA. NSO[L] will be decid-
able iff L is decidable.

3. NSO[L] is going to be theory of BA interpreted in NSO[L].

4. in NSO[L] each constant is in curly brackets.

5. jump right away to an example:

∀x.x ∪ {∃x.x = x′} = 1

¬∃x. (x ∪ {∃x.x = x′}) + 1 ̸= 0

{∃x.x = x′} = 1

0 = 1

at the bottom of the recursion, there is no curly brackets, so the only
constants appearing in this bottom level, are 0, 1.

6. product algebra, or in other words, the many-sorted theory of BA.

7. add infinitely many symbols to the signature to make the LTA of NSO
atomless.

Video 8: GS (Guarded Successor)

1. Time-Compatible Structure (TC structure). given some domain D,a finite-
time TC stucture over D will have as its domain D∗, and an infinite time
TC structure Dω. finite/infinite are going to behave the same mostly due
to Lowenheim-Skolem. a TC structure is also equipped with a prefix-
preserving (aka TC) function f : D∗ → D∗. so if s1 is a strict prefix s2,
then f (s1) is a strict prefix of s2.
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2. note that this models programs.

3. this extends to trees. by considering multiple successor relations.

4. f : D∗ → D∗ can also be written as f : (N → D) → (N → D), but if f is
TC then can be typed as f : N → (D → D)

5. Bounded Lookback (BL). a TC structure is of BL[k], if f (n) depends only
on f (n− 1) , . . . , f (n− k) .

f (n) = f (n− 1) + 1

f (1) = 5

xn = xn−1 + 1

6. a function of BL[k] can be typed as a pair of functions, one of type f :

(D → D)
k → (D → D) and another of type [k] → (D → D).

7. any formula, in virtually any logic, with 2k+2 free variables, can be seen
as defining a set of BL[k] structures.

∀x1∃y1∀x2∃y2 . . .
∞∧

n=k

ϕ (xn, yn, xn−1, yn−1, . . . xn−k, yn−k, y1, y2, . . .)

8. for satisfiability. given ϕ (xn, xn−1, yn) define ϕn (x1) to be a formula that
says “exists a TC structure of length n starting with x1”

ϕ2 (x1) = ∀y2∃x2.ϕ (x2, x1, y2)

ϕn (x1) = ∀y2∃x2∀y3∃x3.ϕ (x2, x1, y2) ∧ ϕn−1 (x3, x2, y3)

∃x1.ϕn (x1)

9. temporal logic, over infinite alphabet, that comes not only with equality,
but with a rich theory: atomless ba.

10. moreover, it is decidable whether “forall input exists a time-compatible
output”.

11. two major deicdable fragments of fol are the two-vars and the guarded.

12. for example ϕ (xn, xn−1, yn) can be written as

∀nk.s (n, k) → ϕ (x (n) , x (k) , y (k))

∀nk.s (n, k) ∧ s (k,m) → ϕ (x (n) , x (k) , x (m) , y (k))

∀nk.s (n, k) → (s (k,m) → ϕ (x (n) , x (k) , x (m) , y (k)))

9



13. so succesor relations appear only as guards, and s.t. the relative position
of all position variables is fully determined.

∃nk.s (n, k) ∧ s (k,m) ∧ ϕ (x (n) , x (k) , x (m) , y (k))

14. quantifier collapse:
∀n∃k.s (n, k) → . . .

∀n∀k.s (n, k) → . . .

any quantifier prefix over succesors appearing only in guards, can be col-
lapsed to no alternation.

xn = 0 ∨ xn = 1

(∀n.xn = 0) ∨ (∀n.xn = 1)

xn > 0 ∧ xn < 1

(∀n.xn > 0) ∧ (∀n.xn < 1)

15. to decide disjunction ϕ∨ψ wrt sets of models, simply check if one of them
is sat.

16. so assume a boolean combination of sets of models, write it in DNF. now
decide emptiness for each DNF clause.

17. conjunctions are well-behaved, so each DNF clause has one positive and
multiple negatives:

ϕ ∧
∧
i

¬ψi

18. automata no output, transducers are automata with output, all with finite
alphabet.

19. let’s consider a “fourth law of robotics”: any future sw update to the robot,
should admit the laws of robotics.

20. the robot and the update, are written in the same language. so it has to
be a language, that can take as input statement in the same lang, and
check sat against other such sentences.

21. not only the tau language (tau=nso+gs) can speak of its own formulas,
but 1. it is also rich enough to express sw 2. inputs/outputs of this sw
are nothing but sentences in various logics incl the tau lang.

22. which bas? 1. of tau formulas 2. fixed-finite bas. 3. two-var+counting 4.
tables 5. bfs and sbf

23. and ofc all equipped with additional conservative extensions to the theory
of ba as described in taba.pdf
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