
NSO and GSSOTC: A Two-Pager for the Logician

Ohad Asor

April 17, 2024

The methods described here are being protected by a patent application.

1 NSO: Nullary Second Order Logic
The goal of NSO is to have a language that can speak about its own sentences, in a consistent and
decidable way. Tarski’s “Undefinability of Truth” has shown that this is impossible under a certain
broad setting. The key of NSO is to abstract sentences, so much so, that they make merely Boolean
algebra (BA) elements. In particular, there is no access to the syntax of the sentences (in contrast
to Tarski’s setting).

Any classical logic closed under Boolean combinations makes a BA, called the Lindenbaum-
Tarski algebra (LTA) of that logic. Recall that this is only up to logical equivalence. Now observe
two important points: 1. Any such logic that has an infinite signature (whether constant, relation,
or function symbols), makes an atomless BA. 2. All countable atomless BAs are isomorphic (which
is a well known theorem)1. Clearly all sentences in languages of interest are finite strings made of
finite alphabet, hence countable. The countable atomless BA is therefore the LTA of major logics
of interest.

When we say “the theory of BA interpreted in a fixed BA B” we mean not only the first order
theory of BA interpreted in B, but we also mean that its signature is equipped with constants that
are interpreted in each element of B, so each element has a unique constant assigned to it. We will
refer to those constants as the interpreted constants. Now fix a language L that its LTA makes a
countable atomless BA. Consider NSO[L] to be the theory of BA interpreted in that LTA. So far,
NSO[L] is a language that speaks about L, but still not about itself. To achieve that, we make
the LTA of NSO[L] to be an atomless BA as well (as currently it is only the two-element BA,
as any logic that is interpreted in a fixed structure). This can be done by adding infinitely many
uninterpreted constant symbols (the uninterpreted constants), or any other such trick. Now the first
kind of constants can be extended to include sentences in NSO[L]. Since both L and NSO[L] make
a countable atomless BA, they are isomorphic. By that, and by a few more technical details, we
can make NSO[L] speak (including quantify) over its own sentences. Further, NSO[L] is decidable
iff L is decidable.

2 Guarded Successor
GSSOTC stands for Guarded Successor Second Order Time Compatible. Here we will not deal
with the “second order” part although it is pretty much implied from the setting described here.
As an intuitive starting point, any formula with two free variables, in any logic, can be seen as
defining a set of sequences: ϕ (x, y) can be seen as defining a set of sequenecs such that a sequence
is in the set, iff any two consecutive elements x, y satisfy ϕ (x, y). Now consider the class of logics
having the following property: fix a finite set of constant and variable symbols. Then the number of

1Moreover, all atomless BAs are elementarily equivalent, as proved by Tarski.

1

formulas making use only of those constant and [free] variable symbols (we allow arbitrary quantified
variables), up to logical equivalence, is finite. The most relevant such logic is the theory of atomless
BA. Let’s call it here the “finiteness property” (though in other documents we use the term “weakly
ω-categorical theories”). We say that a sequence s models ϕ (x, y) and write s |= ϕ, iff ϕ (sn−1, sn)
holds for all n. Denote by |s| the length of s.

Given ϕ (x, y), consider the following process: ask whether exists s s.t. |s| = 2 and s |= ϕ,
then whether exists s s.t. |s| = 3 and s |= ϕ, and so on. This series of questions look like
ϕn (x) = ∃y.ϕn−1 (y) ∧ ϕ (x, y) where ϕn (x) means “exists a sequence of length n starting with x”,
and then to get a final answer we of course need to consider ∃x.ϕn (x). Due to the finiteness property,
this series of questions is going to loop, and even reach a fixed point due to the monotonic nature
of the setting. We obtain a result of the form: “if a sequence of length N exists, then a sequence of
any larger length exists”. By Lowenheim-Skolem, it also implies that an infinite sequence exists.

For now we mention only three additional points:

1. Seen as program specification language, those sequences are actually “outputs” or “states”,
however we’d like to support “time-compatible inputs” as well. This means that we’d like to
prove that for each input, at each point of time, exists an output, that does not depend on fu-
ture inputs (time-compatible). So we can deal with formulas of the form ϕ (xn, xn−1, yn, yn−1)
where xn, xn−1 are the current and previous inputs, respectively, and similarly for yn, yn−1

for outputs (observe the bounded lookback in every formula). The quantifier pattern would
look like ∀x1∃y1∀x2∃y2 It is easy to express it as a recurrence relation as above, and again
use the finiteness property. We obtain the following very rare properties of the temporal logic
GS: it is a temporal logic that operates over an infinite domain of inputs and outputs, where
this domain is equipped not only with equality but also with the theory of atomless BA, and
we can prove that for all input exists a time-compatible output.

2. We have to justify the name GS (Guarded Successor). It so happens that the free-variable
formulation is equivalent to adding a sort of natural numbers, and function symbols N → D
where D is the domain of the original language, and where the successor relation may appear
only in a guarded fashion. for example, ϕ (xn, xn−1, yn, yn−1) would be written as

∀nk.s (n, k) → ϕ (x (n) , x (k) , y (n) , y (k))

where s is the successor relation. It can easily be shown that we can support arbitrary
quantification over the natural numbers, e.g. ∀n∃k∀m and in fact in the GS setting they
collapse to a single quantifier (exercise). It is also possible to have a more complex guard.
The precise definition is: the guard should allow to determine the exact relative distance
between the time points.

3. Combining NSO with GS gives us a software specification language, with the above desirable
properties, and where inputs and outputs, may be sentences in this very same language. This
can, for the first time, support implementations of the form: “reject a software update if it
doesn’t satisfy certain desired properties”. It is therefore a crucial ingredient in AI safety.

2

