
Theories and Applications of
Boolean Algebras

Ohad Asor

Work-in-progress draft version 0.25, 10 August, 2024

Contents

Preface 5

Chapter 1. Preliminaries and Prior Art 7
1.1. Boolean Algebras and Boolean Functions 7
1.2. Boolean Equations 12
1.3. The Theory of Boolean Algebra 14
1.4. Lindenbaum-Tarski Algebras 16
1.5. Hall’s Marriage Theorem 16

Chapter 2. Quantifier Elimination 18
2.1. Distinct Representatives 18
2.2. The Atomic Case 23

Chapter 3. Finding Solutions 24
3.1. In General and Minterm Normal Form 24
3.2. In Order Normal Form 28

Chapter 4. Decidable Conservative Extensions 32
4.1. Cardinality 32
4.2. Cartesian Product 33
4.3. Higher-Order Boolean Functions 33
4.4. Homomorphisms and Hemimorphisms 34
4.5. Converse Algebras 36
4.6. Monadic Algebras 39
4.7. Infinitary Operations 41
4.8. Recurrence Relations 48
4.9. Pseudo-Boolean Functions 50
4.10. Skolem and Henkin 51

Chapter 5. The Coutable Atomless Boolean Algebra 53
5.1. Homomorphisms and Ultrafilters 53

Chapter 6. NSO: Nullary Second Order Logic 55
6.1. Overview 55
6.2. The Construction 56
6.3. Splitters 57

3

CONTENTS 4

Chapter 7. GSSOTC: A Temporal Logic 58

Chapter 8. The Tau 1.0 Language 66
8.1. Overview 66
8.2. Tables 67
8.3. Pointwise Revision 68
8.4. Uninterpreted Constants 69
8.5. Distributed Systems 70

Exercises 72

Appendix I: The Two-Variable Fragment with Counting 74

Bibliography 84

Index 85

Preface

This monograph presents methods and results related to the first
order theory of Boolean algebras and extensions thereof, which I devel-
oped during my [ongoing] work in IDNI AG designing and developing
the Tau product family, in particular the Tau language which is a com-
bination of logics described here: NSO, GSSOTC, and extensions to
the first order theory of Boolean Algebras. I hope the reader will get
the impression that the theories of Boolean algebras are immensely
useful, and that difficult questions may become exceptionally easy us-
ing Boolean-algebraic tools, due to the unique well-behaveness of those
algebras, and in particular the atomless ones.

The main four contributions of this monograph are 1. the language
NSO, 2. the language GSSOTC, 3. decidable conservative extensions
to the first order theory of Boolean Algebras, and 4. related algo-
rithms. The first solves a long-lasting problem of finding a logic than
can consistently refer to its own sentences. The second is a novel tem-
poral logic. We further show applications to Description Logic and the
two-variable fragment of first order logic.

The methods here are protected from commercial use by being
patented.

It is my wish that mathematicians, computer scientists, and espe-
cially logicians, will find this field as fascinating as I find it, and in fact
as the older generations of logicians found them (maybe most notably
Alfred Tarski). Boolean algebras were indeed studied extensively in the
past, but unfortunately much less the field of Boolean Functions and
Equations (over general Boolean algebras), the latter four words being
the title of a book by Rudeanu which is apparently the best source to
this subject. It has been over 50 years since that book was published
and since then very little literature touched the subject. It so happens
that Boolean functions and equations are strongly connected to the
first-order theory of Boolean algebras and their decision procedures.
The connection between Boolean algebras and logic need not even be
mentioned as it is so obvious to anyone in those and related fields. The
field of Algebraic Logic contributed much to the formalization of logic

5

PREFACE 6

in algebraic means (and in particular Boolean-algebraic means), yet, to
my knowledge, yielded very little algorithmic results. I hope that read-
ers that find the topics in this text interesting will continue researching
for new logical languages and algorithms incorporating the outstand-
ing computational and mathematical properties of Boolean algebras,
Boolean function, and equations.

Finally, I would like to thank Enrico Franconi and Pawel Parys for
helping me in this work.

CHAPTER 1

Preliminaries and Prior Art

This chapter introduces some basic facts about Boolean Algebras
and Boolean Functions. Our notation mixes set-theoretic notation with
the ring-theoretic notation. This will prove to be very useful. Contrary
to the rest of this monograph, everything in this chapter is prior art.

1.1. Boolean Algebras and Boolean Functions

Definition 1.1. A Boolean Ring (BR) is a unital ring satisfying
xx = x for all x in the ring.

Instead of the usual axiomatization of Boolean algebras (and its
dozens of equivalent variations), we define Boolean algebras by relying
on the definition of rings. Similarly we approach Boolean functions1 by
relying on the notion of polynomials over a ring.

Definition 1.2. A Boolean Algebra (BA) is a sextuple (B,∩,∪,′ , 0, 1)
where B is a BR, ∧ (conjunction) is just the ring multiplication, ∨ (dis-
junction) is defined by x ∩ y = x+ y + xy, and ′ (complementation) is
defined by x′ = 1 + x. 0, 1 are the ring’s 0, 1.

We defined BAs using BRs but it is also possible to go the other way
around by defining x + y = xy′ ∨ x′y. All BRs are therefore BAs and
vice versa. We will therefore mix the notations and allow expressions
like (a+ b′c) ∪ d.

The Boolean algebraic operators are usually denoted by ∧,∨,¬ but
we shall reserve those symbols to denote logical connectives. So the
BA’s meet and join will be denoted by juxtaposition or · or ∩, and ∪,
respectively, complementation using ′, and symmetric difference (ring
sum) by +2.

Definition 1.3. A Boolean Function (BF) of n variables over a
BA B is a multivariate polynomial function Bn → B.

1Many authors define the term Boolean Function in fundamentally different
ways. Similarly, and unfortunately, some authors confuse “Boolean” with “Binary”.

2The symbol + is again not to be confused with notation by other authors
using it for union (or disjunction or join).

7

1.1. BOOLEAN ALGEBRAS AND BOOLEAN FUNCTIONS 8

Note that we distinguish between polynomials and polynomial func-
tions. A polynomial is a formal object that may contain arbitrary
powers, however when treated as a function, idempotency comes into
play and all powers are eliminated since xn = x. We will always con-
sider polynomial functions rather polynomials. Hence whenever we say
“polynomial”, we merely use it as a shorthand to “polynomial function”.

By a monomial we shall refer to product of variables and a single
constant (the “coefficient”).

Definition 1.4. A Simple Boolean Function (SBF) of n variables
is a BF that can be written s.t. the monomials’ coefficients are either
0 or 1.

In other words, an SBF is a Boolean combination of variables, while
a BF is a Boolean combination of variables and constants. Yet another
way to state it, is that an SBF returns either 0 or 1 for all 2n possible
substitutions of 0, 1. BFs and SBFs form a BA in their own right w.r.t.
pointwise operations.

Theorem 1.1. Any BR is a commutative ring. Further, for any x
in a BR we have x+ x = 0.

Proof. By definition, (x+ x)2 = x + x. Expanding, we get x +
x + x + x = x + x implying x + x = 0. For commutativity, write
(x+ y)2 = x + y. This expands and simplfies into xy = −yx which is
same as xy = yx since we have just shown that x = −x. □

Definition 1.5. In a BA, define a partial order ≤ by x ≤ y iff
xy′ = 0.

It is easy to verify that this is a partial order indeed in which no
element is below 0 nor above 1. It is also a lattice, precisely comple-
mented distributive lattice3. We will also write x < y for the case that
x ≤ y and x ̸= y.

The following proposition can trivially be verified:

Proposition 1.1. In any BA, the following holds for all x, y, z in
the BA:

(1) ∩,∪ are commutative and associative
(2) x (x ∪ y) = x ∪ xy = x
(3) x ∪ yz = (x ∪ y) (x ∪ z)
(4) x (y ∪ z) = xy ∪ xz

3It is indeed an interesting feature of BAs that they are an algebraic object, as
well as an order theoretic object, and even logical and topological objects as well
known.

1.1. BOOLEAN ALGEBRAS AND BOOLEAN FUNCTIONS 9

(5) x ∪ 1 = x
(6) xx′ = x+ x = 0
(7) x′′ = x
(8) (xy)′ = x′ ∪ y′
(9) (x ∪ y)′ = x′y′

(10) x ∪ y = 0 iff x = y = 0
(11) xy = 1 iff x = y = 1
(12) x ≤ y iff x ∪ y = y iff xy = x
(13) x ≤ y iff y′ ≤ x′

Definition 1.6. The two-element BA is the BA containing only
the elements 0, 1.

Clearly it is also the finite field F2.

Definition 1.7. A minterm of n variables, denoted by XA, is a
product xa11 x

a2
2 . . . xann where A ∈ {0, 1}n and x1i = xi;x

0
i = x′i.

If xy = 0 then we say that x, y are disjoint. So 0 is disjoint from
all elements including itself. The following proposition is trivial:

Proposition 1.2. Two minterms over n variables are disjoint iff
they are not equal.

Definition 1.8. A function Bn → B is in minterm normal form if
it can be written as

f (X) =
⋃

A∈{0,1}n
cAX

A

where cA ∈ B.

Clearly any function in minterm normal form is a BF. The converse
is also true. cf. [rud1] for the proof of the following theorem:

Theorem 1.2. A function Bn → B is a BF iff it can be written in
minterm normal form

f (X) =
⋃

A∈{0,1}n
f (A)XA

Note that we useX,A as tuples of variables, so the notation f (X) , f (A)
should be clear.

Corollary 1.1. A BF is uniquely determined by its values over
the two-element BA.

The following is immediate:

1.1. BOOLEAN ALGEBRAS AND BOOLEAN FUNCTIONS 10

Proposition 1.3. Any univariate BF can be written uniquely in
the form f (x) = ax + b as well as the forms f (x) = ax + bx′, f (x) =
ax ∪ bx′.

Observe that if ab = 0 then a+ b = a∪ b. This is sometimes useful.
In particular, the latter two representations of f are using the same
a, b. Also note that a = f (1) ; b = f (0) so f (x) = xf (1) + x′f (0).

The following is called Boole’s normal form (sometimes mistakingly
called Shannon’s normal form), which, over the two-element BA, cap-
tures the ternary operation of if-then-else:

Corollary 1.2. Any Boolean f : Bn → B can be written uniquely
in the form f (x1, . . . , xn) = x1g (x2, . . . , xn) + x′1h (x2, . . . , xn) where
the unique g, h are g (x2, . . . , xn) = f (1, x2, . . . , xn) and h (x2, . . . , xn) =
f (0, x2, . . . , xn).

Another way to write BFs is called here Conjunctive Boole’s normal
form:

Lemma 1.1. Any Boolean f : Bn → B can be written uniquely
in the form f (x1, . . . , xn) = (x′1 ∪ g (x2, . . . , xn)) (x1 ∪ h (x2, . . . , xn))
where the unique g, h are g (x2, . . . , xn) = f (1, x2, . . . , xn) and h (x2, . . . , xn) =
f (0, x2, . . . , xn).

Boolean combination of functions in Boole’s normal form is very
easy. We show this result in its generality:

Lemma 1.2. Let f (x) = ax+bx′, g (x) = cx+dx′ be unary Boolean
functions and h (x, y) a binary Boolean function. Then h (f (x) , g (x)) =
h (a, c)x+ h (b, d)x′.

Proof. Applying corollary 1.2:

h (f (x) , g (x)) = xh (f (1) , g (1))+x′h (f (0) , g (0)) = xh (a, c)+x′h (b, d)

□

A famous result is Stone’s representation theorem for Boolean al-
gebras:

Theorem 1.3 (Stone’s Representation Theorem). Any BA is iso-
morphic to a BA of sets, where ∩ is the usual set intersection, ∪ is set
union, ′ is set complement, and ≤ is set containment.

This clearly justifies our notation. We will not prove this theorem
here. We will only mention that each BA element is identified with a
set containing all ultrafilters that contain that element. An ultrafilter
is nothing but a ring homomorphism from the BR into the two-element

1.1. BOOLEAN ALGEBRAS AND BOOLEAN FUNCTIONS 11

BA. An element belongs to the ultrafilter if the homomorphism sends
it to 1.

Stone went further and showed that this set representation of BAs
is in fact a topological one. We shall not deal with it here.

Indeed by homomorphism we always mean ring homomorphism
which coincides with the intuitive notion of BA homomorphism.

Definition 1.9. An nonzero element x in a BA is an atom if does
not exists y s.t. 0 < y < x.

Definition 1.10. A BA is atomless if it contains no atoms.

Definition 1.11. A BA is atomic if for each nonzero x in it, there
exists an atom y s.t. y ≤ x.

Note that a BA may be neither atomic nor atomless. The following
proposition is immediate, cf. [kop]:

Proposition 1.4. An nonzero element x in a BA is an atom if for
all y in the BA, either x ≤ y or x ≤ y′.

The following result is well-known and follows from a back-and-
forth argument, but we shall omit the proof here:

Theorem 1.4. All countable atomless BAs are isomorphic.

Further, Tarski gave conditions under which two Boolean algebras
are elementarily equivalent (meaning that any sentence in the first order
theory of BA is true in one iff it’s true in the other). We will not need
this full result here. We will only mention that:

Theorem 1.5. All atomless BAs are elementarily equivalent, and
all infinite atomic BAs are elementarily equivalent.

Theorem 1.6. For any BF f we have

f (x) f (x′) = f (0) f (1)

f (x) ∪ f (x′) = f (0) ∪ f (1)
f (x) + f (x′) = f (0) + f (1)

Proof. Write f in the form f (x) = ax + bx′. Then by applying
proposition 1.2:

f (x) f (x′) = (ax+ bx′) (bx+ ax′)

= abx+ abx′ = ab = f (0) f (1)

f (x) ∪ f (x′) = (ax+ bx′) ∪ (bx+ ax′)

= (a ∪ b)x+ (a ∪ b)x′ = a ∪ b = f (0) ∪ f (1)

1.2. BOOLEAN EQUATIONS 12

f (x) + f (x′) = (ax+ bx′) + (bx+ ax′)

= (a+ b)x+ (a+ b)x′ = a+ b = f (0) + f (1)

□

We now observe the following property of BFs which may be seen
as a first demonstration of their outstanding convenient properties:

Corollary 1.3. Let f be a BF over a BA B, then⋂
x∈B

f (x) = f (0) f (1)

⋃
x∈B

f (x) = f (0) ∪ f (1)

Proof. Direct application of theorem 1.6. □

1.2. Boolean Equations

Definition 1.12. A system of Boolean equations of n variables and
k equations is a system of the form {fi (X) = 0}ki=1 where X ∈ Bn and
each fi is a BF.

Observe that an equation of the form f (x) = g (x) can be written
as f (x) + g (x) = 0, and an equation of the form f (x) ≤ g (x) can
be written as f (x) g′ (x) = 0. Therefore the definition of a system of
equations covers also arbitrary equality and order constraints.

Proposition 1.5. Any system of Boolean equations is equivalent
to a single equation.

Proof. {fi (X) = 0}ki=1 holds iff
⋃k

i=1 fi (X) = 0 does. □

We follow the terminology in [rud1, rud2]:

Definition 1.13. A Generalized System of Boolean Equations (GSBE)
is either a Boolean equation, or the negation of a Boolean equation
(namely involving ̸= 0), or a finite combination of GSBEs by means of
logical conjunction and disjunction.

Remark 1.1. We will sometimes write systems of equations and
inequations in the form of GSBEs but we will not specify explicitly that
the system is finite. It should be clear that the system always contains
finitely many equations and inequations unless specified otherwise.

Definition 1.14. An Elementary GSBE is a system of the form
f (X) = 0, g1 (X) ̸= 0, . . . , gk (X) ̸= 0.

1.2. BOOLEAN EQUATIONS 13

Note that we cannot squash many inequations into one in the same
fashion as proposition 1.5.

Now we describe Boole’s consistency condition. A system of equa-
tions (or a GSBE) is consistent if it has a solution. We have already
seen that a system of Boolean equations can be written as a single
equation of the form f (X) = 0. The following was discovered by
Boole:

Theorem 1.7. Let f : Bn → B be a BF, then ∃X.f (X) = 0 iff⋂
A∈{0,1}n

f (A) = 0

and ∃X. [f (X) ̸= 0] iff ⋃
A∈{0,1}n

f (A) ̸= 0

Proof. For the first statement cf. [rud1, bro]. The second state-
ment is trivial. □

Note that this theorem is actually a case of quantifier elimination.
Another very important result is the Lowenheim’s General Repro-

ductive Solution (LGRS):

Theorem 1.8. Let f : Bn → B be a BF, and assume f (Z) = 0
for some Z ∈ Bn. Then the set {X ∈ Bn| (X) = 0} equals precisely
the image of ϕ : Bn → Bn defined by ϕ (X) = Zf (X) +Xf ′ (X). De-
cyphering the abuse of notation, this reads ϕi (X) = zif (X)+xif

′ (X).

cf. [rud1, bro] for a proof. One of the morals of this theorem may
be stated as “if you know one solution, then you know all solution”.

Remark 1.2. The R in LGRS which stands for reproductive, means
that ∀X.f (X) = 0 ↔ ϕ (X) = X. In particular, ∀X.ϕ (ϕ (X)) =
ϕ (X).

Two more important facts in which we’ll make use of are:

Theorem 1.9. Let f : B → B be a BF s.t. f (0) f (1) = 0, or
equivalently, ∃x.f (x) = 0. Then f(x) = 0 iff x = t + f (t) for some t,
iff f (0) ≤ x ≤ f ′ (1).

Proof. For the first equivalence, write f (x) = ax+ b. Then
f (x+ f (x)) = a (x+ ax+ b)+b = ax+ax+ab+b = ab+b = f (0) f (1) = 0

and for the other direction, if f (x) = 0 then just put t = x. For the
second equivalence, write f (x) = ax ∨ bx′, then

f (x) = 0 ↔ (ax = 0) ∧ (bx′ = 0) ↔ (x ≤ a′) ∧ (b ≤ x)

1.3. THE THEORY OF BOOLEAN ALGEBRA 14

□

We now describe the method of successive elimination (cf. [rud1,
rud2, bro]):

Theorem 1.10. Let f : Bn → B be a BF. Set fn = f and

fk (x1, . . . , xk) = fk+1 (x1, . . . xk, 0) fk+1 (x1, . . . xk, 1)

Then X ∈ Bn satisfies f (X) = 0 iff
⋂

A∈{0,1}n f (A) = 0 (namely the
equation satisfies the consistency condition) and

fk (xk = 0) ≤ xk ≤ [fk (xk = 1)]′

For clarity, let us write it explicitly for n = 3. The consistency
condition reads
f (0, 0, 0) f (0, 0, 1) f (0, 1, 0) f (0, 1, 1) f (1, 0, 0) f (1, 0, 1) f (1, 1, 0) f (1, 1, 1) = 0

and if it holds, all solutions are described by
f1 (0) ≤ x1 ≤ f ′

1 (1)

f2 (x1, 0) ≤ x2 ≤ f ′
2 (x1, 1)

f3 (x1, x2, 0) ≤ x3 ≤ f ′
3 (x1, x2, 1)

where
f1 (x1) = f2 (x1, 0) f2 (x1, 1) = f (x1, 0, 0) f (x1, 0, 1) f (x1, 1, 0) f (x1, 1, 1)

f2 (x1, x2) = f3 (x1, x2, 0) f (x1, x2, 1) = f (x1, x2, 0) f (x1, x2, 1)

f3 (x1, x2, x3) = f (x1, x2, x3)

We can also write fk in explicit, non-recursive form

fk (x1, . . . , xk) =
⋂

a1∈{0,1}

⋂
a2∈{0,1}

· · ·
⋂

an−k∈{0,1}

f (x1, . . . xk, a1, . . . an−k)

1.3. The Theory of Boolean Algebra

1.3.1. General Form. The [first-order] theory of BA is simply a
first-order axiomatization of the Boolean operations. Formulas in the
language of BR can be may be described by the grammar

ϕ := atom|¬ϕ|ϕ ∧ ϕ|∃var.ϕ
atom := bf = 0

bf := var|const|bf + bf |bf · bf
Virtually all authors consider only the constants 0,1. However this
clearly makes each BF in the grammar merely an SBF. We give strong
focus to theories of BA interpreted in some fixed BA, enhanced with
constants to each BA element interpreted by their corresponding el-
ement indeed. This allows us broader abilities to model-check fixed

1.3. THE THEORY OF BOOLEAN ALGEBRA 15

BAs. To my knowledge, such theories (containing the above constants)
and in particular their decidability properties and algorithms, were not
studied as such, but in the form of GSBEs as above, and even then,
very little literature is available. The main focus of this monograph is
to investigate and extend such theories.

Given a formula, we can write it in prenex normal form or negated
prenex normal form, such that the innermost quantifier is existential.
Further we can write the matrix in DNF and push the innermost ex-
istential quantifier under the disjunctions. This way we can focus on
studying an existential quantifier followed by an elementary GSBE.

1.3.2. Minterm Normal Form. Observe that
a ∪ b = 0 ↔ a = 0 ∧ b = 0

and recall that each BF can be written as a sum of minterms, or in
DNF (note that writing a BF in DNF is not the same thing as writing
a formula in DNF). This allows an alternative syntax for theories of
BA in which atomic formulas are of the form cXA = 0. We refer to this
form minterm normal form. Note that this is not the same minterm
normal form of BFs, as here it applies to formulas.

Remark 1.3. This normal form puts a bound on the number of
quantifier-free logically equivalent formulas with n free variables and k
constants. The accounting is as follows: the formula is itself an SBF of
atomic formulas, and there are 22

N different SBFs in N variables. In
our case N is the number of possible minterms which is readily k2n.
We therefore end up with a triple exponential 22k2

n

upper bound.

1.3.3. Order Normal Form. We present another normal form
that might be useful in certain cases. It depends on choice of one
variable. Typically the chosen variable is the one in the innermost
quantifier, while the subformula following it is indeed quantifier-free.

In order normal form wrt x, each atomic formula is of the form
a ≤ x ≤ b. In DNF, similar to the general normal form and in contrast
to minterm normal form, it is possible to have only one positive atomic
formula in each DNF clause. Another way to write a DNF clause is
order normal form is:

a ≤ x ≤ b

{x ≰ ci}i∈I
{dj ≰ x}

j∈J
It is easy to see how to convert the general form to order normal

form. Positive atoms
f (x,X) = 0

1.5. HALL’S MARRIAGE THEOREM 16

are
f (0, X) ≤ x ≤ f ′ (1, X)

and negative atoms
f (x,X) ̸= 0

are
[f (0, X) ≰ x] ∨ [x ≰ f ′ (1, X)]

1.3.4. Complexity. Quantifier elimination in theories of BA where
constants are either 0,1 were studied by Tarski by introducing the so-
called invariants. Kozen [4] extended this notion of invariants and
by that derived the specific complexity characterization for the deci-
sion problem. For infinite BAs, it is complete for

⋃
cSTA(∗, 2cn, n).

Roughly, this means anything that can be done in exponential time
by an alternating Turing machine with linearly many alternations. For
the two-element BA, it is simply QBF which is maybe the most famous
PSPACE-complete problem.

1.4. Lindenbaum-Tarski Algebras

Lindenbaum-Tarski Algebras (LTAs) are obtained by taking any
logic in which its formulas are closed under conjunction, disjunction,
and negation, quotiened by logical equivalence. Therefore they form
a BA. This BA may be atomic or atomless or neither: looking at a
formula as a set of models (which is justified because formulas are
considered only up to logical equivalence), then a formula that has a
single model, is clearly an atom in the LTA. Observe that every can be
seen as an ultrafilter.

Remark 1.4. An important example of an atomless LTA is for a
logic in which its signature is infinite. This observation is trivial and
is left to the reader. Also observe that, if looking at BA elements as
sets (as justified by Stone’s theorem), whether or not set of models as
in LTA, then every element in any atomless BA, except 0, is an infinite
set.

1.5. Hall’s Marriage Theorem

Our treatment of GSBEs will involve Hall’s marriage theorem. We
present it here in its set-theoretical version:

Definition 1.15. Let A1, . . . , An be sets, not necessarily distinct.
A choice of elements a1 ∈ A1, . . . , an ∈ An such that ai ̸= aj for all
i ̸= j is called a system of distinct representatives.

1.5. HALL’S MARRIAGE THEOREM 17

Theorem 1.11. Let A = A1, . . . , An be a sequence of sets, not
necessarily distinct. Then A does not have a system of distinct rep-
resentatives, iff there exists a subsequence B = B1, . . . , Bm of A s.t.
|
⋃

iBi| < m.

This condition of nonexistence is commonly translated to nonexis-
tence of an X-saturated matching in a bipartite graph, and efficient
algorithms exist for this decision problem. Finding the subsequence B
(if exists) is commonly referred to as finding a “Hall Violator”.

Remarkably, the consistency of GSBEs comes down directly to
Hall’s theorem, to be demonstrated here later on, which is something
that apparently all authors dealing with GSBEs have overlooked.

A simple observation which we shall make use of later on is that a
system of distinct representative exists iff it exists for the subsequence
in which all infinite A’s are removed from it. In other words, infinite
sets in a family of sets don’t influence the existence of distinct repre-
sentative.

CHAPTER 2

Quantifier Elimination

In this chapter we shall present methods for deciding formulas in
the language of BA by means of quantifier elimination.

2.1. Distinct Representatives

Several results have been published regarding quantifier elimination
in BAs, going back to Tarski [], and continuing through [„ „] to mention
only a few examples. However some of them do not offer any conve-
nient or [relatively] efficient algorithm, especially not when compared
to our algorithm, and moreover some of the statements in the litera-
ture (concerning either quantifer elimination or GSBEs) even have easy
counterexamples. Many of the relevant proofs in the literature are also
very hard to verify. Furthermore, some results were not accompanied
with proofs or algorithms, but only with examples which do not seem
to demonstrate the general case nor their correctness even on special
cases. Here we shall give simple, elementary statements, proofs, and
algorithms, for consistency conditions of GSBEs (and in turn for quan-
tifier elimination in theories of BAs) in a fashion that completely settles
this topic. The atomless case is easy, both conceptually and algorithmi-
cally, and offers a full quantifer elimination method. The non-atomless
case is much more demanding, and offers quantifier elimination only
into theories strictly richer than theories of BA. We begin with the
general case and then point out the differences between atomless and
non-atomless algebras.

Theorem 2.1. Let XA1 , . . . , XAm be minterms in n variables, and
b1, . . . , bm elements in some BA. Then

∃X.
m∧
i=1

XAi ≥ bi

iff bibj = 0 whenever Ai ̸= Aj.

Proof. First assume that XA1 ,XAm are all distinct and there-
fore the nonzero b’s are all disjoint, otherwise convert any two equations

18

2.1. DISTINCT REPRESENTATIVES 19

of the form
XAi ≥ s
XAi ≥ t

into the equivalent form XAi ≥ s ∨ t. Necessity is now immediate
recalling that two different minterms are always disjoint and that sub-
sets of disjoint sets must also be disjoint. For sufficiency and n = 1
the equations take the form x ≥ b1 and x′ ≥ b2 which indeed holds iff
b1b2 = 0. Assume for n and consider an additional variable x. Then
we can split the equations into p+ q = m equations and rewrite them
as {

xXAi ≥ bi
}p
i=1{

x′XBj ≥ cj
}q
j=1

and let X be a solution of {
XAi ≥ bi

}p
i=1{

XBj ≥ cj
}q
j=1

by the induction hypothesis after making sure that all Ai, Bi are disjoint
(while if p + q = 1 then a solution trivially exists). If p ̸= 0, set x =⋃

k bk. Then
⋃

k ck ≤ x′ due to the disjointness assumption. Therefore

xXAi =

(⋃
k

bk

)
∧XAi ≥ biX

Ai = bi

x′XBj ≥

(⋃
k

ck

)
XBj ≥ cjX

Bj = cj

Similarly set x =
⋂

k c
′
k if p = 0, or simply x = 0. □

Corollary 2.1. The system
{
biX

Ai ̸= 0
}m
i=1

has a solution iff
there exists 0 < ci ≤ bi s.t. cicj = 0 whenever Ai ̸= Aj.

The condition in the corollary is completely equivalent to theo-
rem 1.11 once treating each bi as follows: if it can be written as a
disjunction of atoms, then we treat it as a set whose elements are those
atoms, and each ci is a choice of an atom. If bi cannot be written as
a union of atoms, then we treat it as an infinite set and by that it is
eliminated from the problem as we have pointed out after theorem 1.11.

This gives a complete characterization and algorithm for quantifier-
elimination in theories of fixed BAs (namely theories where the BA is
given in contrast to theories concerning all or several BAs), by eliminat-
ing all equalities by first using proposition 1.5 and then using the LGRS,
a procedure which in turn eliminates all equality constraints, then writ-
ing all inequations in minterm normal form, and asking whether a

2.1. DISTINCT REPRESENTATIVES 20

combination of minterms exists (one from each inequation) s.t. no Hall
violator exists.

We now make the quantifer elimination explicit. In the non-atomless
case, the quantifier is eliminated into a statement in a richer lan-
guage (e.g. language with cardinalities), to a condition saying that
no Hall violator exists, or that a corresponding bipartite matching ex-
ists. In the atomless case, first observe that a system of the form
g1 (X) ̸= 0, . . . , gn (X) ̸= 0 is consistent iff none of the g’s is identically
zero. Write it in the form g1 (x,X) ̸= 0, . . . , gn (x,X) ̸= 0 and we’d like
to express the same condition such that x is eliminated. This is readily
done by writing g1 (0, X) ∪ g1 (1, X) ̸= 0, . . . , gn (0, X) ∪ gn (1, X) ̸= 0
due to corollary 1.1. We formulate one of those observations in a corol-
lary to be used later on:

Corollary 2.2. Multivariate BFs over an atomless BA have a
common nonzero iff none of them is identically zero.

Lemma 2.1. In atomless BA, the system

f (x) = 0 ∧ g (x) ̸= 0

has a solution iff

f (0) f (1) = 0 ∧ g (x+ f (x)) ̸= 0

has a solution.

Proof. If f has a zero, then all such zeros are precisely the range
of x+ f (x) by theorem 1.9. So we can write the system as

f (x+ f (x)) = 0 ∧ g (x+ f (x)) ̸= 0

If t is a solution of this system, then s = t + f (t) is a solution of
the original system. Now f has a zero iff f (0) f (1) = 0 by Boole’s
consistency condition, in which case f (x+ f (x)) is identically zero.

□

Theorem 2.2. In atomless BA, the system

f (x) = 0 ∧
∧
i∈I

gi (x) ̸= 0

has a solution iff

f (0) f (1) = 0 ∧
∧
i∈I

gi (f (0)) ∪ gi (f ′ (1)) ̸= 0

has a solution.

Proof. Using the last corollary and along the lines of the last
lemma. □

2.1. DISTINCT REPRESENTATIVES 21

Proposition 2.1. For any BF f we have

xf (x) = xf (1)

x′f (x) = x′f (0)

Proof. Exercise. □

Lemma 2.2. In any BA, x is a solution of the elementary GSBE

f (x) = 0 ∧
∧
i

gi (x) ̸= 0

iff it’s a solution of the GSBE

(2.1.1) f (x) = 0 ∧
∧
i

xf ′ (1) gi (1) ̸= 0 ∨ x′f ′ (0) gi (0) ̸= 0

iff it’s a solution of the GSBE

(2.1.2) f (0) f (1) = 0 ∧ f (x) = 0∧∧
i gi (0) gi (1) ̸= 0 ∨ xf ′ (1) gi (1) ̸= 0 ∨ x′f ′ (0) gi (0) ̸= 0

Proof. First substitute the general solution x+ f (x) of the posi-
tive part into the negative parts and obtain:

f (x) = 0 ∧
∧
i

gi (x+ f (x)) ̸= 0

and since f (x) = 0 there is no harm in multiplying the negative part
with f ′ (x):

f (x) = 0 ∧
∧
i

f ′ (x) gi (x+ f (x)) ̸= 0

now for any h (x) we have h (x) ̸= 0 iff xh (1) ̸= 0 ∨ x′h (0) ̸= 0, so we
can write the negative part as:

f (x) = 0 ∧
∧
i

xf ′ (1) gi (f
′ (1)) ̸= 0 ∨ x′f ′ (0) gi (f (0)) ̸= 0

and using proposition 2.1 for the parts f ′ (1) gi (f
′ (1)) and f ′ (0) gi (f (0))

we obtain the first result. Now simply account for the conditions of f, gi
having zeros at all, and obtain the second result. □

Corollary 2.3. In atomless BA, the system

f (x) = 0 ∧
∧
i

gi (x) ̸= 0

has a solution iff

f (0) f (1) = 0 ∧
∧
i

f ′ (1) gi (1) ∪ f ′ (0) gi (0) ̸= 0

2.1. DISTINCT REPRESENTATIVES 22

Remark 2.1. The big conjunction in the latter line is equivalent
to saying that f ′ (x) gi (x) is not identically zero. Algorithmically, we
don’t necessarily need to expand it according to Boole’s consistency
condition. Other methods would be to normalize f ′ (x) gi (x) (e.g.
CNF/DNF/ANF/BDD) and to check if we get zero identically.

Corollary 2.4. In atomless BA, the system

f (x) = 0 ∧
∧
i

gi (x) ̸= 0

has a solution iff

f (0) f (1) = 0 ∧
∧
i

f ′ (x) gi (x) ̸= 0

Proof. We give an alternative proof using lemma 2.1. We want
to prove that:

∃x. ax+ bx′ = 0
cx+ dx′ ̸= 0

↔ ∃x. ab = 0
a′cx+ b′dx′ ̸= 0

applying the general solution of the positive part in the left side to its
negative part, and expressing that the negative part of the right side
is not identically zero, we obtain:

∃x. ab = 0
c (x+ ax+ bx′) + d (x′ + ax+ bx′) ̸= 0

↔ ab = 0
a′c ∪ b′d ̸= 0

which simplifies into:

∃x. ab = 0
(a′c+ ad)x+ (bc+ b′d)x′ ̸= 0

↔ ab = 0
a′c ∪ b′d ̸= 0

now we say that the negative part of the left side is not identically zero
and we obtain:

∃x. ab = 0
a′c ∪ ad ∪ bc ∪ b′d ̸= 0

↔ ab = 0
a′c ∪ b′d ̸= 0

recalling that disjoint union is the same as disjoint symmetric differ-
ence. We have to show that under the assumption ab = 0 we have

a′c ∪ ad ∪ bc ∪ b′d = a′c ∪ b′d
and indeed, rearrange the lhs as

(a′c ∪ bc) ∪ (b′d ∪ ad)
which is

(a′c+ bc+ a′bc) ∪ (b′d+ ad+ ab′d)

now assuming ab = 0 so ab′ = a and a′b = b, we obtain
(a′c+ bc+ bc) ∪ (b′d+ ad+ ad)

2.2. THE ATOMIC CASE 23

which is just a′c ∪ b′d as desired. □

2.2. The Atomic Case

Fix an atomic Boolean algebra B.

Theorem 2.3. The system {aix ̸= 0}Ni=1 , {bjx′ ̸= 0}Kj=1 has a solu-
tion iff there exist atoms si, tj s.t.

{si ≤ ai}Ni=1 , {tj ≤ bj}Kj=1 ,∀ij.si ̸= tj

in which case any
⋃

i si ≤ x ≤
⋂

j t
′
j is a solution.

Proof. Verifying
⋃

i si ≤ x ≤
⋂

j t
′
j as solutions is straightforward.

For the other way around, if x satisfies {aix ≥ ci}Ni=1 , {bjx′ ≥ dj}Kj=1 for
some nonzero ci, dj, then any choice of atoms from ci, dj will satisfy our
requirements as ci must be disjoint from any dj. □

Corollary 2.5. The system {aix ̸= 0}Ni=1 , {bjx′ ̸= 0}Kj=1 has a so-
lution iff it has a solution of cardinality at most N .

Proof. This is because x =
⋃N

i=1 si is a solution, as above. □

Corollary 2.6. A formula in the language of BA containing n
variables interpreted over B is true iff it’s true in an algebra of size
22

n−1.
Proof. We relativize quantifiers successively as follows. Without

loss of generality we deal only with existentially quantified single DNF
clause of the form

∃x.f (x) = 0 ∧
∧
i

gi (x) ̸= 0

which can be written as:
[f (0) f (1) = 0] ∧ ∃x.

∧
i

gi (x+ f (x)) ̸= 0

and can be converted into the form:
[f (0) f (1) = 0] ∧ ∃x.

∧
i

aix ̸= 0 ∧
∧
i

bix
′ ̸= 0

where ai, bi are minterms in the remaining variables. Since there are no
more than 2n−1 minterms in the n variables excluding x, this formula
can be relativized as:

[f (0) f (1) = 0] ∧ ∃ |x| ≤ 2n−1.
∧
i

aix ̸= 0 ∧
∧
i

bix
′ ̸= 0

□

We shall see more forms of quantifier elimination in the next section.

CHAPTER 3

Finding Solutions

3.1. In General and Minterm Normal Form

First we present a way to find a single zero of a BF, which in turn
allows to then characterize all zeros by LGRS. The following theorem
should be understood recursively, so we find a substitution for each
variable and move on to the next variables.

Theorem 3.1. For f (x,X) = xg (X) + x′h (X), let Z be a zero of
g (Z)h (Z) (which is guaranteed to exist by Boole’s consistency condi-
tion). Then both f (h (Z) , Z) = 0 and f (g′ (Z) , Z) = 0.

Proof. Exercise. □

We now deal with finding solutions for elementary GSBE in atom-
less BA. Consider

f (X) = 0

{gi (X) ̸= 0}i∈I
and let ϕ be the LGRS of f (wrt some arbitrarily chosen single zero of
f), and assume that a solution to the whole system, exists. Set hi (X) =
gi (ϕ (X)) and suppose T satisfies {hi (T) ̸= 0}i∈I , then f (T) = 0 be-
cause the LGRS is reproductive (cf. remark 1.2). So to solve the
original system we only need to solve {hi (T) ̸= 0}i∈I and the solution
to the original system is then ϕ (T). To this end, for each hi we find a
bitstring Hi s.t. hi (Hi) ̸= 0. This is the same as writing hi in minterm
normal form (alternatively DNF), choosing one minterm (which corre-
sponds to Hi), and hi (Hi) will yield the coefficient of that minterm.
We now get a system of the form

XHihi (Hi) ̸= 0

(the “minterm system” hereby) which clearly depends on the choice of
Hi but any such single choice, if has a solution, will yield a solution to
the original system, and vice versa: if a solution to the original system
exists, then such a choice exists.

For runtime optimization considerations, there are two things to
bear in mind here:

24

3.1. IN GENERAL AND MINTERM NORMAL FORM 25

1. The more disjoint the hi (Hi)’s are, namely hi (Hi)hj (Hj) = 0,
the less effort we’ll need to invest in order to make the minterm system
disjoint (cf. the next exercise).

2. The more Hi = Hj, the less minterms will be involved in the
final system.

Solving the minterm system can be done by:

Theorem 3.2. The system{
xXAi = 0

}
i∈I1{

x′XBi = 0
}
i∈I2{

xXCi ̸= 0
}
i∈I3{

x′XDi ̸= 0
}
i∈I4

has a solution in atomless BA iff all of the following conditions hold:
1. no Ai equals Ci,
2. no Bi equals Di,
3. no XCi , XDi is zero,
4. XAi = 0 whenever Ai = Bj,
In which case a solution is x =

⋃
j tj ∪

⋃
mX

Bm for any 0 < ti <

XCi.

Proof. Necessity of 1,2,3,4 is immediate. For sufficiency we simply
plug-in the solution:

xXAi =
⋃
j

tjX
Ai ∪

⋃
m

XAiXBm = 0

by 1,4.
x′XBi = XBi

⋂
j

t′j
⋂
m

XBm′ ≤ XBiXBi′ = 0

xXCi =
⋃
j

tjX
Ci ∪

⋃
m

XBmXCi ≥ ti ̸= 0

x′XDi = XDi

⋂
j

t′j
⋂
m

XBm′ = XDi

⋂
j

t′j ̸= 0

where the second equality is by condition 2 and the third is because
the complement of each tj contains a nonzero part from each nonzero
minterm. □

Remark 3.1. In case there is no Ai, simply solve for x′.

Remark 3.2. Note that this minterm normal form allows not only
finding solutions but also an alternative method of quantifier elimina-
tion.

3.1. IN GENERAL AND MINTERM NORMAL FORM 26

Remark 3.3. For a close-to-minimal solution (as strictly minimal
usually doesn’t exist), choose the smallest available ti, and while trans-
forming the system to minterm form, choose Hi s.t. hi (Hi) is the
smallest.

Remark 3.4. theorem 2.1 and its proof may also be used, and is in
fact very similar to the latter theorem. It also explicitly handles BFs
rather SBFs.

Theorem 3.3. The system∧
i

aiX
Ai = 0∧

i

biX
Bi ̸= 0

has a solution iff ∧
i

bi
⋂

j|Aj=Bi

a′j ̸= 0

equivalently ∧
i

bi ≰
⋃

j|Aj=Bi

aj

Proof. In the setting of corollary 2.4, f (X) =
⋃

i aiX
Ai , so we

obtain

biX
Bi

[⋃
j

ajX
Aj

]′
̸= 0

equivalently
bi
⋂
j

a′jX
Bi ∪XAj ′XBi ̸= 0

but

a′jX
Bi ∪XAj ′XBi =

{
a′jX

Bi Aj = Bi

XBi Aj ̸= Bi

□

Corollary 3.1. X satisfies∧
i

aiX
Ai = 0∧

i

biX
Bi ̸= 0

iff it satisfies ∧
i

aiX
Ai = 0

3.1. IN GENERAL AND MINTERM NORMAL FORM 27∧
i

biX
Bi

⋂
j|Aj=Bi

a′j ̸= 0

Corollary 3.2. If ∧
i

aiX
Ai = 0∧

i

biX
Bi ̸= 0

has a solution, namely if
∧

i bi
⋂

j|Aj=Bi
a′j ̸= 0, then a solution can be

obtained by choosing
0 < ci ≤ bi

⋂
j|Aj=Bi

a′j

where
Bi ̸= Bj → cicj = 0

and then solving ∧
i

aiX
Ai = 0∧

i

ciX
Bi′ = 0

Proof. Set ti = bi
⋂

j|Aj=Bi
a′j. By the previous corollary, it is

enough to replace the negative part with∧
i

tiX
Bi ≥ ci

equivalently ∧
i

t′ici ∪XBi′ci = 0

but t′ici = 0 by assumption. □

Remark 3.5. A strong normalization algorithm would follow: given
a quantifier-free formula, convert it to MNF+BDD form, which means
that atomic formulas are of the form aXA = 0, and the formula is a
BDD of atomic formulas. Now go over all paths in that BDD. To each
path:

(1) Squeeze positive atomic formulas of the form aXA = 0 and
bXA = 0, namely ones with equal exponent.

(2) Apply the normalization in corollary 3.1.
(3) Treat all atomic formulas with zero coefficient.
(4) Discard the path if it makes an unsatisfiable system of equa-

tions.

3.2. IN ORDER NORMAL FORM 28

Now reconstruct the BDD from the remaining modified paths. Rerun
this while procedure until a fixed point.

Optionally we can then perform reverse-normalization in order to
obtain a more human readable form yet keeping it normalized. Given
a normalized formula∨

i

∧
j

aijX
Aij = 0 ∧

∧
k

bikX
Bik ̸= 0

we’d like to put it in form∨
i

fi (X) = 0 ∧
∧
j

gij (X) ̸= 0

To this end we perform the following:
(1) Over each path of the BDD of atomic formulas, obtain positive

constraints and “squeeze” them, so multiple atomic formulas
of the form aXA = 0 each, become a single atomic formula of
the form f (X) = 0.

(2) Negate that BDD and now interpret all paths in it as a CNF of
the original BDD. So path elements are considered negated and
disjuncted. Now squeeze multiple negative atomic formulas of
the form aXA ̸= 0 into a single atomic formula of the form
f (X) ̸= 0.

(3) Negate the BDD again and repeat the whole procedure until
a fixed point.

3.2. In Order Normal Form

cf. section 1.3.3 for the setting discussed here.

Theorem 3.4. In atomless BA, there exists x s.t.

a ≤ x ≤ b

{ci ≰ x}
i∈I

{x ≰ dj}j∈J
iff for all i, j:

ci ≰ a ≤ b ≰ dj

Proof. Exercise. □

Remark 3.6. Note that ci ≰ a ≤ b ≰ dj reads ci ≰ a∧ a ≤ b∧ b ≰
dj. It does not mean, for example, that a ≰ dj.

Remark 3.7. In this formulation we assume that the positive con-
dition a ≤ x ≤ b always appears, even if only 0 ≤ x ≤ 1.

3.2. IN ORDER NORMAL FORM 29

In light of the previous section, to find an explicit solution it is
enough to find one for a system without a positive part. Sometimes a
“nice” solution exists:

Lemma 3.1. In any BA (not necessarily atomless), if the system

{ci ≰ x}
i∈I

{x ≰ dj}j∈J
where

∀i∈I∀j∈J .cid
′
j = 0

has a solution, then if I = ∅ then x = 1 is a solution, and if J = ∅
then x = 0 is a solution, otherwise

x =
⋃
j∈J

d′j

is a solution.

Proof. The case of empty I, J is trivial. For the general case, a
solution exists iff ci ̸= 0 ∧ dj ̸= 1. Now simply

d′ix = d′i
⋃
j∈J

d′j ≥ d′i ̸= 0

cix
′ = ci

⋂
j∈J

dj = ci ̸= 0

since cid′j = 0 is same as ci ≤ dj. □

In the previous lemma, x is an SBF in C,D. This is not always the
case, for example in c < x < d, no solution can be written as an SBF
in c, d. However it is somewhat easy to classify all cases in which x is
indeed an SBF in C,D, and moreover, it is easy to see that it is always
possible to write a solution as a BF (since that BF can simply equal a
constant which is a solution). We start with the following lemma which
in particular pins down the systems in which such an SBF exists:

Lemma 3.2. In a system {ci ≰ x}
i∈I∧{x ≰ dj}j∈J , a necessary and

sufficient condition that x = f (C,D), for some BF f , is a solution, is:

(1) for all i ∈ I exists Pi ∈ {0, 1}|I| , Qi ∈ {0, 1}|J | s.t. pi = 1 and
f (Pi, Qi) ̸= 1, and

(2) for all j ∈ J exists Uj ∈ {0, 1}|I| , Vj ∈ {0, 1}|J | s.t. vj = 0 and
f (Uj, Vj) ̸= 0.

3.2. IN ORDER NORMAL FORM 30

Proof. Write f in minterm normal form

x = f (C,D) =
∑
A,B

f (A,B)CADB

now trivially

x′ci =
∑
A,B

f ′ (A,B) ciC
ADB ̸= 0 → ∃AB.ai = 1 ∧ f (A,B) ̸= 1

xd′j =
∑
A,B

f (A,B) d′jC
ADB → ∃AB.bj = 0 ∧ f (A,B) ̸= 0

□

Definition 3.1. In a BA B, a splitter is a partial function S : B →
B s.t. 0 < S (x) < x for all x which is nonzero nonatom.

Clearly a splitter always exists in atomless BA. Henceforth we shall
assume the existence of a splitter denoted by S. We say that x has
a good splitter if calculating S (x) does not make use of the atomless
assumption, e.g. when x is explicitly written as x = y ∪ z with yz ̸=
0 ∧ y ̸= z. Otherwise we say that x has only a bad splitter.

The following lemma and corollary was obtained by [pp]:

Lemma 3.3. If the system {ci ≰ x}
i∈I ∧{x ≰ dj}j∈J has a solution,

and if x satisfies

∀AB.CADB ̸= 0 → xCADB ̸= 0 ∧ x′CADB ̸= 0

alternatively
x =

⋃
A,B

S
(
CADB

)
then x is a solution.

Proof. Simply

x′ci = x′

(
ci
⋃
A,B

CA
−iD

B

)
≥ x′ciC

A
−iD

B ̸= 0

xd′i = x

(
d′i
⋃
A,B

CADB
−i

)
≥ x′d′iC

ADB
−i ̸= 0

where CA
−i refers to a minterm in all c’s except ci, and where the

last inequalities follow from the fact that the system has a solution, so
ci ̸= 0 therefore at least one minterm with ci appearing positively is
nonzero, and similarly for dj. □

3.2. IN ORDER NORMAL FORM 31

Corollary 3.3. If the system {ci ≰ x}
i∈I ∧ {x ≰ dj}j∈J has a so-

lution, and if x satisfies

x =
⋃

A,B∈T

S
(
CADB

)
when T is a set of pairs of bitstrings s.t. containing each ci positively
at least once and each dj negatively at least once, and s.t. CADB is
nonempty for all A,B ∈ T , then x is a solution. Moreover, such an x
always exists.

Proof. Fully along the lines of the previous proof. □

Remark 3.8. Finding T can be done in quadratic time using a
simple greedy algorithm: start with c1 and conjunct it with c2 and c′2,
in parallel, and similarly for d. Proceed with the nonempty branch and
continue.

Lemma 3.4. In atomless BA, if the system

a ≤ x ≤ b

{ci ≰ x}
i∈I

{x ≰ dj}j∈J
has a solution, then a minimal solution exsits iff ∀j.a ≰ dj, in which
case x = a is the minimal solution. Similarly a maximal solution exists
iff ∀i.ci ≰ b, in which case x = b is the maximal solution.

Proof. Exercise. □

Remark 3.9. cf. remark 3.6.

CHAPTER 4

Decidable Conservative Extensions

In this chapter we will show how to extend the theory of BA with
additional constructs, and how to reduce those extensions back to the
pure theory of BA.

4.1. Cardinality

In what follows f (x) = ax+ bx′ is any Boolean function.

Theorem 4.1. Let f (x) be a Boolean function. Then its range is
the interval [ab, a ∪ b].

Proof. Exercise. □

Corollary 4.1. The equation |f (x)| = n has a solution iff |ab| ≤
n ≤ |a ∪ b|.

The following theorem is a strong and useful generalization of Boole’s
consistency condition:

Theorem 4.2. Let f (x) be a Boolean function. Then the minimum
of |f (x)| is attained precisely when

a′b ≤ x ≤ a′ ∪ b

and the maximum precisely when

ab′ ≤ x ≤ a ∪ b′

Proof. By theorem 1 the minimum of |f (x)| is |ab|. The set of
x’s s.t. f (x) = ab is given by solving

g (x) = ax+ bx′ + ab = 0

and the general solution is g (0) ≤ x ≤ g′ (1) namely a′b ≤ x ≤ a′ ∪ b
and the claim for the minimum is proved. the For maximum, similarly
write

g (x) = ax+ bx′ + a ∪ b = 0

so b+ a ∨ b ≤ x ≤ a′ + a ∨ b equivalently ab′ ≤ x ≤ a ∨ b′. □

32

4.3. HIGHER-ORDER BOOLEAN FUNCTIONS 33

4.2. Cartesian Product

Given an expression involving ∪,∩,′ ,× and constants and variables,
where × is interpreted over the sets underlying the BA elements (as
guaranteed by Stone’s representation theorem for BAs, alternatively
over any BA interpreted over fixed sets), and whenever this expression
typechecks so cartesian product of e.g. two elements cannot interact
as-is with a cartesian product of e.g. three elements, we can use the
well known identities

(ab)× (cd) = (a× c) (b× d)

(a× b)′ = (a′ × b′) ∪ (a× b′) ∪ (a′ × b)

(or similar identities widespread in literature) to push × to the inner-
most level in the expression. Then given a first order formula, we can
make the BF appearing in each atomic formula take e.g. the form of
disjunctions of cartesian products of minterms. We now convert the
formula to minterm normal form (or a weaker form based on DNF of
BFs). Now pulling out × over the conjunctions in each clause, we know
that the product equals the empty set iff at least one multiplicand is
empty, which would be a disjunction of formulas without ×.

Note that this allows cartesian product of elements from different
BAs as in the many-sorted theory of BAs.

4.3. Higher-Order Boolean Functions

It is possible to quantify over BFs, SBFs, and certain CBFs (condi-
tional BFs as below), and their higher order counterparts, and obtain
an equivalent formula without quantification over functions, using the
following method. Consider a formula involving existential (or univer-
sal, mutatis mutandis) quantification ∃f over such functions. Each BF
of n variables can be written as a Boolean expression involving 2n con-
stants (e.g. by using Boole’s normal form or algebraic normal form or
minterm normal form, per subexpression considering a single variable,
or over the whole expression considering all variables), so quantifica-
tion over BFs is converted into 2n first order quantifiers. Similarly for
SBFs we quantiy over constants and require them to be either 0 or 1. A
CBF is a Boolean expression that involves the ceiling function defined
by taking zero to zero and all other BA elements to one, or even more
generally, a formula in the language of BA that is interpreted as the
values 0,1 in the BA (which is the same as allowing quantifiers and
equality/inequality under the ceiling function). In their full generality,
CBFs may involve unboundedly many coefficients. Restricting them,

4.4. HOMOMORPHISMS AND HEMIMORPHISMS 34

e.g. by requiring that expressions under the ceiling function (or in for-
mulas) must be SBFs, or requiring constants to be taken from some
fixed finite set, allows a quantifier elimination into first order in the
same fashion as above.

Higher order functions (BF, SBF, and restricted CBF) are seen as
operating over the coefficients of their input (possibly higher order)
functions and returning coefficients, and are therefore translated ac-
cordingly, so a higher order function that takes a BF of n variables and
returns a BF of n variables, will be written as a function that takes 2n
BA elements and returns 2n elements, with all necessary adjustment
for all cases, mutatis mutandis, and similarly for a function that takes
a function of functions, and so on.

For efficiency, there is no need to expand the formula exponentially
(or a tower of exponentials) right at the beginning, but it can be done
step-by-step with opportunities for simplifications and eliminations in
each step, in the following fashion: a quantifier over a BF of n variables
can be converted to a quantification over two BA elements and over two
BFs over n − 1 variables, simply by writing down the Boole’s normal
form (or any other form e.g. Reed-Muller) for the quantified function
w.r.t. one (possibly cleverly chosen) variable.

4.3.1. Application to Second Order Finite Model Check-
ing. TBD: obviously second order finite model checking can be rewrit-
ten as quantification over SBFs.

4.4. Homomorphisms and Hemimorphisms

In what follows we will deal with existential formulas of the form

ϕ ≡ ∃x1, . . . xn.f (X) = 0 ∧
∧
j

gi (X) ̸= 0 ∧
∧
i

ψi

where each ψi is of the form x = hj (y) where x, y may be constants,
or taken from x1, . . . xn. hj here is either a BA homomorphism or a
monoid homomorphism (as we shall describe shortly), and the rest of
ϕ is the general form of a DNF clause in the language of BA. We will
transform ϕ to a formula which does not contain hj.

Remark 4.1. Here we support the many-sorted theory of BA, so it
is interpreted in the product of multiple BAs, and the homomorphisms
may be between different BAs. In particular we can support ultrafilters
which are nothing but homomorphisms into the two-element BA.

A homomorphism here is simply a ring homomorphism. The term
hemimorphism is used by Halmos and is defined by:

4.4. HOMOMORPHISMS AND HEMIMORPHISMS 35

Definition 4.1. A function h : B1 → B2 between two BAs is a
hemimorphism if h (0) = 0 and h (x ∪ y) = h (x) ∪ h (y) for all x, y.

Any hemimorphism gives rise to a monoid homomorphism, where
the monoid is the multipicative monoid in the BR. Put g (x) = h′ (x′).
Then g (1) = 1 and

g (xy) = h′ (x′ ∪ y′) = (h (x′) ∪ h (y′))′ = h′ (x′)h′ (y′) = g (x) g (y)

This is the same as existential and universal quantifiers in description
logic, where h is seen as a binary relation, and BA elements are seen
as unary relations. We will emphasize on this connection later on.

We therefore assume that each hj in the original formula is either a
homomorphism or a hemimorphism, which includes the case of monoid
homomorphism. Further, we can also cover isomorphisms, by requiring
that a homomorphism has an empty kernel and that it sends 1 to 1,
by a modification of the technique below.

First we convert
∧

i ψi into the form∧
(i,j,k)∈I

[⋃
A∈Ai

cAX
A

]
= hj

(
dkX

Bk
)

where cA, dk are constants. This translation is straight-forward by writ-
ing each element as a disjoint union of minterms, and relying on the
fact that hj distributes over unions.

We now got a finite partition of the BA where the disjoint parts are
the minterms. We can walk over the graph defined by which minterm
is sent to which. The only additional condition we have to add is

dkX
Bk = 0 →

⋃
A∈Ai

cAX
A = 0

with the initial condition dictated by f (X) saying which minterms
must be zero, and this readily comes down to a method to eliminate
the hemimorphisms.

(TBD: fix till the end of the section) For homomorphisms we add
the following condition: disjoint elements are sent to disjoint elements,
namely xy = 0 → h (x)h (y) = 0. This can again be checked by
walking on the graph of which minterm is sent to which.

However in BAs that are not atomless, another cardinality condition
has to be added. This and other results required for those algorithms
are summarized in the following theorem:

Theorem 4.3. If x1, . . . , xn are nonzero and disjoint then there is
a hemimorphism h s.t. ∀i.yi = h (xi) for arbitrary y1, . . . , yn. Under

4.5. CONVERSE ALGEBRAS 36

the same setting, and if the BA is complete or countable atomless, a
homomorphism exists iff yiyj = 0 for all i ̸= j, and |xi| ≤ |yi|.

Remark 4.2. |x| refers to cardinality, and in pure BA terms, it is
the supremum of how many disjoint sets x can be written as a union
thereof.

Proof. Set h to send anything in [
⋃

i xi]
′ to zero, and for hemimor-

phisms for all 0 < ti ≤ xi,set h (ti) = yi. The rest is immediate. For
homomorphisms, if the BA is complete then this follows from theorem
5.13 in [kop]. we use Stone’s duality in its topological setting, recall-
ing that a homomorphism is the [set] inverse of continuous functions
(in the Stone topology), and vice versa. We have to find a continuous
function f s.t. ∀i.yi = f−1 (xi). But this already says that certain
clopen sets are sent to clopen sets, and disjoint sets are sent to disjoint
sets, so as long as the preimage of each set is not smaller (in terms of
cardinality) than the original set (and in atomless BA all clopen sets
are infinite), there exists an continuous extension of this function over
the whole space. In particular we can again set h to send anything in
[
⋃

i xi]
′ to zero. □

Remark 4.3. In the above algorithms, the cardinality constraint
has to be clearly addressed, e.g. by not fixing the underlying BA and
allowing it to be infinite (which will require a careful consideration of
the constants), or by considering an atomless BA so the cardinality of
each element is either zero or infinite.

4.5. Converse Algebras

Relation Algebras were extensively studied by Tarski. The intu-
ition behind them is to study the BA P (X ×X) (or any subalgebra
thereof) over some set X. It is a BA of binary relations extended
with additional operators, in particular composition and converse. We
will deal here with what we refer to as converse algebras (CA), so no
composition is involved, and the converse of a binary relation R− is
defined by ∀xy.Rxy ↔ R−yx. It is possible to give a more general and
abstract definition of converse, and even abstract the underlying BA
from P (X ×X) or its subalgebras, but we shall not deal with it here.
We will just distinguish one case, which we shall refer to as diagonal-
free converse algebras (DFCA). It means that we treat binary relations
while ignoring their diagonal, so they never contain pairs of the form
Rxx. For this we only need to treat negation: when we take the com-
plement of a relation we make sure to remove the diagonal as well, so
R′ ≡ (X ×X)−d \R.

4.5. CONVERSE ALGEBRAS 37

We use the following notation: Rd will denote the diagonal of R.
R−d will denote R without its diagonal, so R−d = R [Rd]

′. Rs = RR−

denotes the symmetric part of R, while Ra = RR−′ denotes its asym-
metric part.

A DFCA is complete if every relation R has a maximal asymmetric
part, so ∀R∃T.R ∪R− = T ∪ T− ∧ T ⊆ R ∧ TT− = 0.

4.5.1. Zeros of Polynomials. A converse polynomial in R will
be a BF in Rd, R,R

−, and over DFCA can be written as

f
(
R,R−) = ARR− +BRR−′ + CR′R− +DR′R−′

while in general CA we will use

f
(
Rd, R,R

−) = ARR−R′
d +BRR−′ + CR′R− +DR′R−′ + ERd

Theorem 4.4. In a complete DFCA, a converse polynomial has a
zero iff (

A ∪ A−) (B ∪ C−) (B− ∪ C
) (
D ∪D−) = 0

Proof. Clearly f (R,R−) = 0 iff f (R,R−) ∪ f− (R,R−) = 0, and

f
(
R,R−) ∪ f− (R,R−)

=
(
A ∪ A−)RR−+

(
B ∪ C−)RR−′+

(
C ∪B−)R′R−+

(
D ∪D−)R′R−′

so
RR− ≤ A′A−′

RR−′ ≤ B′C−′

R′R− ≤ C ′B−′

D ∪D− ≤ R ∪R−

Observe that the second and third equations are the same by taking
the converse on both sides. Noting that R∪R− = RR−∪R′R−∪RR−′,
so

D ∪D− ≤ R ∪R− ≤ A′A−′ ∪B′C−′ ∪ C ′B−′

therefore necessary condition for the existence of solution is

D ∪D− ≤ A′A−′ ∪B′C−′ ∪ C ′B−′

alternatively(
A ∪ A−) (B ∪ C−) (B− ∪ C

) (
D ∪D−) = 0

To show that this is also sufficient, take any(
A′A−′T−′

1 ∪ T1
) (
D ∪D−) ≤ R ≤ A′A−′ ∪ T2

where T1, T2 are maximal asymmetric parts of B′C−′. For a simple
special case, set T to be a maximal asymmetric subset of B′C−′ and
set R = A′A−′ ∪ T . □

4.5. CONVERSE ALGEBRAS 38

The more general case is treated similarly:

Theorem 4.5. In a complete CA, a converse polynomial has a zero
iff (

A ∪ A−) (B ∪ C−) (B− ∪ C
) (
D ∪D−) = 0

DdEd = 0

Proof. Write

0 = f
(
Rd, R,R

−) ∪ f− (Rd, R,R
−)

=
(
A ∪ A−)RR−R′

d+
(
B ∪ C−)RR−′+

(
C ∪B−)R′R−+

(
D ∪D−)R′R−′+EdRd

so
RR−R′

d ≤ A′A−′

RR−′ ≤ B′C−′

R′R− ≤ C ′B−′

D ∪D− ≤ R ∪R−

Rd ≤ E ′
d

implying (D ∪D−)d ≤ E ′
d which is same as Dd ≤ E ′

d. The rest of the
conditions are same as in the DFCA case. A solution would then be
R = A′A−′ ∪ Dd ∪ T where T is again a maximal asymmetric part of
B′C−′. □

4.5.2. Query Answering. Here we shall define a somehow non-
standard notion of query answering. In the field of Knowledge Rep-
resentation (KR) a query would be an open formula, and the answer
would be all substitutions that are entailed from the KB. Another way
to say it, is that it refers to the part that is common to all models. So
if the query is merely an atom of the form Rxy, then the answer resem-
bles

⋂
M |=KBM . There are some caveats here but the main takeaway

is concerning the part that is common to all models indeed. Note that
this need not be a model: consider the formula

C (a) ∧ (C (b) ∨ C (c))

where C is a unary relation and a, b, c are constants. Then the part
common to all models is only C (a), however it is not a model, since
every model will have to include either C (b) or C (c).

Our modified notion of query answering is as follows. Initially, the
query is a single atom of the form Rxy. The answer is going to be a
formula with two free variables, in which R does not appear, and for
each substitution of the variables, the formula is a tautology iff that
substitution holds in all models of R. For example, the answer to the
query Rxy over each of the two formulas

∀xy.Sxy → Rxy

4.6. MONADIC ALGEBRAS 39

∀xy.Sxy ↔ Rxy

is going to be Sxy. An intuitive way to look at it is that the answer
gives an “explanation” that “explains” R without referring to R.

We model the KB as a statement of the form f (R,R−) = 0.
The reason for that will be clear in later chapters. The coefficients
A,B,C,D [, E] may depend on other variables and constants. We
would like to express the query answer α being an R-free expression
satisfying

α =
⋂

R|f(R,R−)=0

R

The following theorem was obtained with help from [pp]:

Theorem 4.6. In a DFCA, if ∃R.f (R,R−) = 0, then

α =
(
D ∪D−) (B− ∪ C

)
Proof. Assume (x, y) ∈ (D ∪D−) \C ′B−′. So (y, x) /∈ B′C−′

therefore (y, x) /∈ Ra; (x, y) /∈ R−
a . Since (x, y) ∈ D ∪ D−, then

(x, y) ∈ Rs ∪Ra which reads (x, y) ∈ R.
For the other direction, if (x, y) /∈ (D ∪D−) \C ′B−′ then either
1. (x, y) /∈ D ∪ D− therefore (y, x) /∈ D ∪ D− so there exists a

solution satisfying (x, y) /∈ R.
2. (x, y) ∈ C ′B−′ ∩ (D ∪D−), if there is a model with (x, y) ∈ R,

then take a model with (x, y) /∈ R but (y, x) ∈ R. □

The CA case is completely analogous and gives the answer

α = Dd ∪
(
D ∪D−)

−d

(
B− ∪ C

)
4.6. Monadic Algebras

Monadic BAs are BAs with additional operator ∃ that satisfies the
axioms:

• ∃0 = 0
• x ≤ ∃x
• ∃ (x ∪ y) = ∃x ∪ ∃y
• ∃ (x∃y) = ∃x∃y

Typically a BA may be equipped with many different such operators.
We also denote ∀ = ¬∃¬. For a good treatment of this subject cf.
[hal]. In particular he shows that

x ≤ ∃y → ∃x ≤ ∃y
and

x ≤ y → ∃x ≤ ∃y

4.6. MONADIC ALGEBRAS 40

We shall use those facts. We are interested in solving equations involv-
ing ∃. One reason it is interesting is because LTAs are a main example
of BAs but quantification is not a Boolean operations. We’d like to
model and solve problems that involve quantification as well.

The following theorem was obtained with help from [pp]:

Theorem 4.7. For bivariate Boolean f , the equation

f (x,∃x) = 0

explicitly

ax∃x+ bx¬∃x+ c (∃x)¬x+ d (¬x) (¬∃x) = 0

has a solution iff
(∃d) (ac ∪ ∀a) = 0

in which case, x = a′∃d is a solution.

Proof. Since x ≤ ∃x we can write

ax+ c (∃x)¬x+ d¬∃x = 0

which reads
x ≤ a′

c (∃x) ≤ x

d ≤ ∃x
Now d ≤ ∃x implies ∃d ≤ ∃x. ∃d ≤ ∃x implies c∃d ≤ c∃x therefore
using the first and second equation, c∃d ≤ x ≤ a′ so one necessary
condition ac∃d = 0 is established. The second necessary condition is
∃d ≤ ∃ (a′) since

(x ≤ a′ ∧ ∃d ≤ ∃x) → ∃d ≤ ∃x ≤ ∃a′

For sufficiency, set x = a′∃d, so

a′∃d ≤ a′

c (∃a′∃d) ≤ a′∃d
d ≤ ∃a′∃d = ∃d

The first equation is trivial, the second follows from the first necessary
condition, and the last follows from the second necessary condition. □

Remark 4.4. A quantifier s.t. ∃x = 0 if x = 0 and otherwise
∃x = 1, is called a simple quantifier and is treated in [hal]. Enhancing
the language of BA with such operator is trivial: convert any atomic
formula of the form f (x,∃x) = 0 into

[x = 0 → f (0, 0) = 0] ∧ [x ̸= 0 → f (x, 1) = 0]

4.7. INFINITARY OPERATIONS 41

ci (∃1x,∃2x) ≰ x

x ≰ dj (∃1x,∃2x)

4.7. Infinitary Operations

The goal of this section is to present a method to explicitly evaluate
the expressions ⋃

X|ϕ(X)

f (X)

and ⋂
X|ϕ(X)

f (X)

where X is a tuple of variables, f is a BF, and ϕ is a GSBE with X
as its unknowns. We focus on atomless BAs, while the treatment for
general BAs is analogous yet more complex, as will be seen from some
of the general following lemmas.

The method presented here is in particular useful for the first order
theory of BA (possibly interpreted in a specific BA with a dedicated
constant symbol to each element) enhanced with the above operations,
while maintaining decidability, by reducing it to the standard BA the-
ory.

It is already surprising that BAs, in particular atomless BAs, are
even closed under the above [possibly] infinitary operations. As we
shall see, the results take an even more surprisingly simple form.

Clearly, it is enough to compute
⋃

X|ϕ(X) f (X) since

⋂
X|ϕ(X)

f (X) =

 ⋃
X|ϕ(X)

f ′ (X)

′

and vice versa. Further, note that⋃
x1,...,xn|ϕ(x1,...,xn)

f (x1, . . . , xn)

=
⋃

x1|ϕ(x1,...,xn)

⋃
x2,...,xn|ϕ(x1,...,xn)

f (x1, . . . , xn)

=
⋃

x2,...,xn|ϕ(x1,...,xn)

⋃
x1|ϕ(x1,...,xn)

f (x1, . . . , xn)

where in the last two equations x1 cleary depends on x2, . . . , xn. This
shows that treating only the univariate case

⋃
x|ϕ(x) f (x) is sufficient.

4.7. INFINITARY OPERATIONS 42

For simplicity, all BAs in this section are assumed to be infinite.
The finite case treatment can be done along the same lines. However
at one point we’ll strongly use the atomless assumption, in which case
our main and final result, under a mild assumption on f (otherwise the
answer is trivial), is⋃

x|f(x)=0∧
∧

i gi(x)̸=0

h (x) = h (1) f ′ (1) ∪ h (0) f ′ (0)

which, most remarkably, is not only a simple closed-form, but also does
not depend on gi. The intuition behind the latter point will be clear
later on.

Lemma 4.1. Let a ∈ B, then⋃
x≰a

x =

{
0 a = 1

1 a ̸= 1

⋂
x≰a

x =

1 a = 1

a′ a′ is an atom
0 otherwise

Proof. We assume that empty disjunction are 0 and empty con-
junctions are 1. For the disjunction claim, the case a = 1 is trivial.
The case of a ̸= 1 is also trivial since then 1 ≰ a. For the conjunction
claim, a = 1 is again trivial. Suppose a′ is a nonatom. Write a′ = b∨ c
where b, c are nonzero and bc = 0. So b ≰ a and c ≰ a. Therefore⋂

x≰a x ≤ bc = 0. Now suppose a′ is an atom. Then x ≰ a iff a′ ≰ x′ iff
a′ ≤ x by proposition 1.4. So a′ ≤

⋂
x≰a x. But a′ ≰ a so

⋂
x≰a x ≤ a′

therefore
⋂

x≰a x = a′. □

Lemma 4.2. Let a ∈ B, then

⋃
x≱a

x =

0 a = 0

a′ a is an atom
1 otherwise

⋂
x≱a

x =

{
1 a = 0

0 otherwise

Proof. If a = 0 then the disjunction and the conjunction are
empty. If a = 1 then all x ̸= 1 satisfy x ≱ a. Suppose a, a′ are

4.7. INFINITARY OPERATIONS 43

both non-atoms. Then exist c, d s.t. 0 < c < a ∧ 0 < d < a′. Set
x = c ∨ d. Then x ≱ a since and x′ ≱ a, since (c ∨ d) a = c ̸= 0 and

ac′d′ = ac′d+ ac′ = acd+ ad+ ac+ a = a+ c ̸= 0

therefore in this case, the big union is one and the big intersection is
zero. If a is an atom, we can write the two equations as⋃

x∈B

a′x

⋂
x∈B

a′x

which, by theorem 1.3, equal a′ and 0, respectively. If a′ is an atom we
note that ⋃

x≱a

x =
⋃
x′≰a′

x =
⋃
x≰a′

x′ =

⋂
x≰a′

x

′

= 1

where the last equality is by 4.1, similarly

⋂
x≱a

x =

⋃
x≰a′

x

′

= 0

□

Lemma 4.3. Let f be a BF and a ∈ B. Then

⋃
x≰a

f (x) =

0 a = 1

af (0) ∪ f (1) a′ is an atom
f (0) ∪ f (1) otherwise

⋂
x≰a

f (x) =

1 a = 1

f (1) (f (0) ∪ a′) a′ is an atom
f (0) f (1) otherwise

⋃
x≱a

f (x) =

0 a = 0

f (0) ∪ a′f (1) a is an atom
f (0) ∪ f (1) otherwise

⋂
x≱a

f (x) =

1 a = 0

f (0) (f (1) ∪ a) a is an atom
0 otherwise

4.7. INFINITARY OPERATIONS 44

Proof. Write f (x) = xf (1) ∪ x′f (0) = (f (1) ∪ x′) (f (0) ∪ x).
Then, using 4.2 and 4.1:⋃

x≰a

f (x) =
⋃
x≰a

xf (1) ∪
⋃
x≰a

x′f (0) = f (1)
⋃
x≰a

x ∪ f (0)
⋃
x≰a

x′

= f (1)
⋃
x≰a

x∪f (0)

⋂
x≰a

x

′

= f (1)

{
0 a = 1

1 a ̸= 1
∪f (0)·

0 a = 1

a a′ is an atom
1 otherwise

similarly ⋃
x≱a

f (x) = f (1)
⋃
x≱a

x ∪ f (0)

⋂
x≱a

x

′

=

f (1) ∩

0 a = 0

a′ a is an atom
1 otherwise

 ∪

[
f (0) ∩

{
0 a = 0

1 otherwise

]

and the intersections are dual, e.g.
⋂

x≱a f (x) =
[⋃

x≱a f
′ (x)

]′
. □

Lemma 4.4. Let a1, . . . , an be elements of B, none of which is 0 nor
1, and where B is atomless, and n > 1. Put X = {x| (x ≰ a1) ∧ · · · ∧ (x ≰ an)}.
Then ⋃

x∈X

x = 1

and ⋂
x∈X

x = 0

Proof. Write X as X = {x| (a′1x ̸= 0) ∧ · · · ∧ (a′nx ̸= 0)}. Let

Y = {x| (a′1x ̸= 0) ∧ · · · ∧ (a′nx ̸= 0) ∧ (a′1x
′ ̸= 0) ∧ · · · ∧ (a′nx

′ ̸= 0)}

If we show that Y is nonempty then the lemma is proved because
then X contains an element together with its complement, but the
nonemptyness of Y follows directly from corollary 2.2. □

Remark 4.5. An interesting property of atomless BA arises from
the proof. In any BA, if f (x) = 0 then f (x′) ̸= 0 unless f ≡ 0. This
is because f (x) ∪ f (x′) = f (0) ∪ f (1) for all f, x. However in case of
g1 (x) ̸= 0, . . . gn (x) ̸= 0,in atomless BA, there’s always a satisfying x
s.t. x′ also satisfies the inequations.

4.7. INFINITARY OPERATIONS 45

Corollary 4.2. For BFs f, g s.t. f (0)f (1) = 0 (trivial otherwise)
we have ⋃

x|f(x)=0

g (x) = g (f (0)) ∪ g (f ′ (1))

⋂
x|f(x)=0

g (x) = g (f (0)) ∩ g (f ′ (1))

Proof. Direct application of theorem 1.9 and theorem 1.3. □

Remark 4.6. Now
⋃

x|f(x) ̸=0 g (x) can easily be evaluated by noting
that ⋃

x|f(x) ̸=0

g (x) =
⋃

x|x≱f(0)

g (x) ∪
⋃

x|x≰f ′(1)

g (x)

and using 4.3.

Corollary 4.3. In atomless BA and for BFs f, g s.t. f (0)f (1) =
0 (otherwise use 4.3) we have⋂

x|f(x)̸=0

g (x) = g (0) g (1)

Proof.⋂
x|f(x)̸=0

g (x) =

g (1) ∪
 ⋃

x|f(x)̸=0

x

′g (0) ∪ ⋂
x|f(x)̸=0

x

and use lemma 4.4. □

Definition 4.2. A univariate BF f is called wide if f (0) f (1) = 0
and ∂f

∂x
̸= 0

∧ ∂f
∂x

̸= 1.

Note that this means that f has more than one zero and is not
identically zero. Clearly we can define “wide wrt x” in case f depends
on several variables. Recall that the Boolean derivative is ∂f

∂x
= f (0)+

f (1).

Definition 4.3. Let B be a BA and f a wide BF over it. Then
B/f is the BA whose elements lie in the interval [f (0) , f ′ (1)]. All
BA operations are relative to this interval, so x′ is x′f ′ (1) and xy is
xy ∪ f (0). We also define the epimorphism hf : B → B/f by hf (x) =
a ∨ bx.

Corollary 4.4. Let B be countabe atomless and f a wide BF over
it. Then B is isomorphic to B/f.

Proof. It is easy to see that B/f is also countable and atomless.
But all countable atomless BAs are isomorphic. □

4.7. INFINITARY OPERATIONS 46

The following is trivial:

Corollary 4.5. Let B be countabe atomless and f a wide BF over
it. The univariate elementary GSBE f (x) = 0 ∧

∧
i gi (x) ̸= 0 has a

solution iff
∧

i gi (x) ̸= 0 has a solution in B/f.

Corollary 4.6. Let B be countabe atomless and f a wide BF over
it. Let g1, . . . , gk be univariate BFs, none of which is identically zero.
Then ⋃

x|f(x)=0∧
∧

i gi(x)̸=0

x = f ′ (1)

⋂
x|f(x)=0∧

∧
i gi(x)̸=0

x = f (0)

Proof. Consider the expressions⋃
x|

∧
i gi(hf (x))̸=0

hf (x)

⋂
x|

∧
i gi(hf (x))̸=0

hf (x)

which is the same as considering⋃
x∈B/f|

∧
i gi(x) ̸=0

x

⋂
x∈B/f|

∧
i gi(x)̸=0

x

while the first readily equals 1 by lemma 4.4 and the second equals 0.
However the preimage of 1 in B/f anything greater or equal to f ′ (1).
But obviously ⋃

x|f(x)=0∧
∧

i gi(x)̸=0

x ≤ f ′ (1)

therefore equality follows. Similarly the preimage of 0 is anything less
than f (0), but all x’s satisfying f (x) = 0 are at least f (0) , so the
second equality follows. □

Remark 4.7. In case that f is not wide, the result can immediately
be calculated as the union is either empty or contains one element.

Corollary 4.7. Let B be countabe atomless and f a wide BF over
it. Let g1, . . . , gk be univariate BFs, none of which is identically zero,
and h some arbitrary BF. Then⋃

x|f(x)=0∧
∧

i gi(x) ̸=0

h (x) = h (1) f ′ (1) ∪ h (0) f ′ (0)

4.7. INFINITARY OPERATIONS 47

Proof. Simply ⋃
x|f(x)=0∧

∧
i gi(x)̸=0

h (x)

= h (1)
⋃

x|f(x)=0∧
∧

i gi(x)̸=0

x ∪ h (0)

 ⋂
x|f(x)=0∧

∧
i gi(x)̸=0

x

′

and using the previous corollary. □

4.7.1. Definability of Models in LTA. Suppose the LTA of
some logic L make an atomless BA. Consider a formula with a single
free variable ϕ (x) in the BA theory of that LTA. Then ϕ defines a set
of formulas in L. In other words, it defines a set of sets of models. If
we want to ask whether a model is in that set of sets, we can take the
union of those sets. The previous results allow us to do so. The BA
is atomless so we can assume that ϕ is quantifier free, and further is
given in DNF. The desired set of models

{M |= x|x ∈ L ∧ ϕ (x)}

can be computed using ⋃
x|f(x)=0∧

∧
i gi(x) ̸=0

x = f ′ (1)

We conclude that the negative literals of each DNF clause do not con-
tribute to this set of models. Remarkebly, if ϕ contains only negative
statements, namely of the form “x does not entail y” or “x is not en-
tailed from y”, we obtain ⋃

x|
∧

i gi(x) ̸=0

x = 1

which means that for every model there is a formula x satisfying ϕ (x).
In the treatment of GSSOTC later on, a model is going to be a

program, and a formula will be a specification. If GSSOTC speaks
of its own BA, and has uninterpreted constant symbols of that type,
then any program will admit this interpretation as long as there are
no positive constraints, and even if there are such, negative constraints
will not matter. This is very counterintuitive. Further, this union is
only about the “positive part of the positive part”, namely f (1) and
not f (0). Therefore f may take the form f = ax. So any way of
expressing a set of programs using interpretation of constant symbols
in GSSOTC, can be reduced to merely a single atomic formula of the
form x ≤ a.

4.8. RECURRENCE RELATIONS 48

4.8. Recurrence Relations

We propose the notion of weakly ω-categorical theory. Recall that
ω-categorical theory is a first order theory in which all of its countable
models are isomorphic. The Ryll-Nardzewski theorem says that this
definition is equivalent to another definition: that up to logical equiv-
alence, there are only finitely many formulas with a fixed number of
free variables. This gives rise to defining weakly ω-categorical theories:
those are theories for which the number of formulas with fixed num-
ber of variables and where the constants appearing in them are taken
from a fixed finite subset of all constants in the language, up to logical
equivalence, is finite. For the sake of this chapter, it does not matter
whether or not the theory is interpreted in a fixed structure.

It is easy to see that the theory of atomless BA and of fixed finite
BA, are both weakly ω-categorical (cf. remark 1.3). In what follows we
shall deal only with those BA theories. However the construction in this
section can be carried out into any weakly ω-categorical theory. Yet in
BA we have an additional aspect not covered by this notion: the above
principle holds not only for formulas but also for terms. Specifically,
there are only finitely many BFs with prescribed finite set of constants
and variables. One special case is exercise ??.

Definition 4.4. The ceiling operator is a function defined by

⌈x⌉ =

{
0 x = 0

1 x ̸= 0

Definition 4.5. A Conditional Boolean Function (, CBF) is a
finite combination of constants and variables by means of Boolean op-
erations and the ceiling operator.

Note that under the ceiling operator we can have a whole expression,
namely a whole CBF. So for example

⌈x+ y⌉xy
is a CBF which is equivalent to{

0 x = y

xy x ̸= y

The following should be obvious:

Proposition 4.1. An equivalent definition of CBF is a function
of the form

CBF := BF |if ϕ then CBF else CBF

4.8. RECURRENCE RELATIONS 49

where ϕ is any formula in the language of BA. In case of atomless or
finite BAs, yet another equivalent definition is obtained by allowing the
ceiling operator to accept a formula ϕ, returning 0 or 1 as whether the
formula is false or true.

We are now ready to define a formula in the language of BA en-
hanced with recurrence relations. It is a list of the form

f 1
0 (X) = F 1

0 (X)

f 1
n (X) = F 1

(
f
k11
n−1 (X) , f

k12
n−2 (X) , . . . , ϕm1

1
n (X) , ϕ

m1
2

n−1 (X) , . . .
)

f 2
n (X) = F 2

(
f
k21
n−1 (X) , f

k22
n−2 (X) , . . . , ϕm2

1
n (X) , ϕ

m2
2

n−1 (X) , . . .
)

. . .

ϕ1
n (X) = Φ1

(
f
p11
n−1 (X) , f

p12
n−2 (X) , . . . , ϕq11

n (X) , ϕ
q12
n−1 (X) , . . .

)
. . .

ψ
(
f 1, f 2, . . . , ϕ1, ϕ2, . . .

)
This messy definition is actually very simple. We simply define for-
mulas (the ϕ’s) and CBFs (the f ’s) by means of recurrence relations,
which may mutually depend on each other. ψ is the “main” formula.
For example:

f0 (x, y) = xy′

fn (x, y) = ⌈x = y⌉x+ yfn−1 (y, x)

ϕ1 (x, y) = x

ϕ2 (x, y) = y

ϕn (x, y) = ∃z.ψn−1 (x, z) ∧ ϕn−1 (z, y) ∧ ϕn−2 (z, x)

∀x∃y∃z.f (x, y) = 0 ∧ ϕ (y, z)
Here f (x, y) is understood naturally as expected: it is the limit that
fn converges into. Similarly for ϕ. Clearly it does not always converge,
but it is easy to pin down all cases, as follows:

(1) The dependency of functions, formulas, and their initial con-
ditions, has to be well founded. So fn can’t depend on gn (or
ϕn) in case that gn (or ϕn) depend on fn. However fn can
depend on gn−1 and so on. This comes down to verifying that
a certain directed graph is acyclic.

(2) The initial conditions should also be sufficient to allow calcu-
lating fn, ϕn for any given n.

4.9. PSEUDO-BOOLEAN FUNCTIONS 50

(3) And most importantly: while calculating f1, f2, f3, . . . and
ϕ1, ϕ2, ϕ3, . . . we are guaranteed to find a loop, namely for
some n ̸= k, ϕn ≡ ϕk (logical equivalence) and similarly for f .
if n = k−1 then it is a fixed point and the result is well-defined.
Otherwise we can proceed in virtually any fashion: either we
return 0 or ⊥, or the first recurring expression, or we enhance
the language to incoroporate “fallbacks” that return a default
answer in case of no fixed point.

This, together with the properties of the language, should be suffi-
cient to show that BA with recurrence relations can be written in an
equivalent form in pure BA without recurrence relations.

Remark 4.8. Multi-indices recurrence relations are supported in
the same manner, namely recurrence relations of the form

fn,k = F (fn,k−1, fn−1,k, . . .)

Remark 4.9. Clearly the same construction can be carried out
while involving higher-order BFs.

4.9. Pseudo-Boolean Functions

Pseudo-Boolean functions (PBFs) are defined in the literature as
functions 2n → R. Here we deal with a generalized notion of the
form 2n → X where X is any set (equivalenty, functions from any
fixed finite set to arbitrary set), possibly equipped with functions and
relations. The theory of BA enhanced with PBFs is one with PBF
symbols in the signature, and where atomic formulas may take the
form f (X) = t (f1 (X) , . . . , fm (X)) where X is a tuple of variables of
type {0, 1}, f, f1, . . . fm are PBFs, and t is a term in the theory of X .
For example, if X = N, we can write

f (x, y) = g (x, x) ∗ h (x, y) + g (y, z)

Note that this is the only extension to the theory of BA: the in-
troduction of those atomic formulas. In particular, it does not allow
quantification over elements of X , however this can sometimes be re-
laxed as we shall see.

The theory of BA enhanced with PBFs is clearly undecidable in
the general case, as expressing Hilbert’s 10th problem is trivial. If X
is a finite set, the theory is trivially decidable and can immediately
be reduced to the theory of BA, as any subset of a finite set can be
encoded as a bitstring. However even for the case of finite X , it is
sometimes desirable to use the PBF formalism in order to sometimes
avoid prohibitive complexity that otherwise would be reasonable.

4.10. SKOLEM AND HENKIN 51

Any system of equations of the form

fi (X) = pi (f1 (X) , . . . , fm (X))

where pi is a term in the theory of X (a “polynomial”) can be converted
into a system of equations over X by introducing variables tiX s.t. tiX =
fi (X). Now the system takes the form

tiX = pi
(
t1X , . . . , t

m
X

)
and is now purely in the theory of X . If any such system of equa-
tions over X is decidable, then the theory of BA extended with such
PBFs is also trivially decidable. Moreover, since any quantifier rang-
ing over 0, 1 can easily be eliminated, we can allow quantification over
X and remain decidable if such quantified systems are decidable over
X . One appealing case is where X is the set of natural/integer/rational/real/complex
numbers, equipped with arbitrary addition and constant multiplication,
and without quantification.

It should be noted that PBFs can canonically be represented as
BDDs, including pointwise operations in X over them, all in a trivial
fashion.

4.10. Skolem and Henkin

We show how to support Henkin (branching) quantifiers. Specifi-
cally, assume a quantification patten ∀x1x2∃y1y2.ϕ. Then y1, y2 depend
on x1, x2 each. Skolemization would take the form

∀x1x2y1y2.y1 = f1 (x1, x2) ∧ y2 = f2 (x1, x2) → ϕ

But assume we’d like y1 to depend only on x1, and y2 only on x2. We
can write it as ∀x1x2∃y1 (x1) y2 (x2) .ϕ. Skolemization would then look
like

∀x1x2y1y2.y1 = f1 (x1) ∧ y2 = f2 (x2) → ϕ

To support this we use the following rather surprising results that
basically conclude with: if a Skolem function exists, then a Boolean
Skolem function exists.

Theorem 4.8. In any BA and Boolean f (x, y), f (x, y) = 0 iff

y = y1x+ y0x
′

where y0, y1 satisfy
f (0, y0) = f (1, y1) = 0

Proof. Write

f (x, y) = axy + bxy′ + cx′y + dx′y′

4.10. SKOLEM AND HENKIN 52

then f (0, y0) = 0 is equivalent to cx′y0 + dx′y′0 = 0 which reads d ≤
y0 ≤ c′. Similarly b ≤ y1 ≤ a′. Using this inequalities and evaluating
f (x, y1x+ y0x

′) proves one direction. For the other direction, suppose
y0, y1 are arbitrary constants. Then requiring f (x, y1x+ y0x

′) = 0
will come down to requiring the above inequalities to hold, which is
equivalent to requiring f (0, y0) = f (1, y1) = 0. □

The multivariate case generalizes as follows:

f (X, y) = 0 ↔ y =
∑
A

yAX
A

where
f (A, yA) = 0

since if
f (X, Y) =

∑
A

yXA +
∑
B

y′XB

then

f

(
X,
∑
C

yCX
C

)
=
∑
A

∑
C

yCX
CXA +

∑
B

(∑
C

yCX
C

)′

XB

=
∑
C

yCX
C +

∑
B

(
1 +

∑
C

yCX
C

)
XB

= 0 +
∑
B

(
XB +

∑
C

yCX
C

)
= 0

Corollary 4.8. The formula

∀x∃y.f (x, y) = 0 ∧
∧
i

gi (x, y) ̸= 0

is equivalent to

∃ab∀x.f (x, ax+ bx′) = 0 ∧
∧
i

gi (x, y) ̸= 0

For the general case, write the formula in DNF and use a Skolem
function for each disjunct.

CHAPTER 5

The Coutable Atomless Boolean Algebra

5.1. Homomorphisms and Ultrafilters

Getting hold on all endomorphisms of a BA is basically impossible.
Even if we consider only ultrafilters (which are endomorphisms with
range being only 0, 1), it is well known that there exists so-called non-
principal ultrafilters in the BA P (N), but proving their existence (or
even the existence of only one of them) requires a weak form of the
axiom of choice, so they’re inherently non-constructive. The situation
in free BAs in much simpler. In this subsection we show how to easily
pin down all endomorphisms and endo-hemimorphisms over the BA of
all SBFs, which is free, and a countable atomless BA.

Here, SBFs will be a finite Boolean combination of the variables
x1, x2,

Theorem 5.1. Let h : SBF → SBF be a homomorphism. Then
there exists a sequence of SBFs f1, f2, . . . s.t. h (f) returns the si-
multanous substitution of all x1, x2, . . . in f with f1, f2, And vice
versa: any such substitution is a homomorphism.

Proof. Since h is a homomorphism, and f is a Boolean combina-
tion of variables, h distributes over the Boolean operations and acts
directly on the variables. Therefore it is defined solely on how it acts
on x1, x2, If it replaces them with other SBFs, it is easy to see that
it is a homomorphism indeed. □

Theorem 5.2. Any ultrafilter h : SBF → SBF is a homomor-
phism s.t. in the setting of the previous theorem, each f1, f2, . . . is
either identically 0 or identically 1.

Proof. One direction is immediate: if the substitutions are only
0, 1 then the range of h is 0, 1. For the other direction, suppose xi
is replaced with fi which is not identically 0, 1. Consider h (f) where
f ≡ xi. Then h (f) is not 0 nor 1. □

Corollary 5.1. The set of all ultrafilters over the BA of SBFs
can be constructively identified with the set of infinite bitstrings.

53

5.1. HOMOMORPHISMS AND ULTRAFILTERS 54

Remark 5.1. Stone duality tells us that each homomorphism is the
inverse of a continuous function (in the Stone topology). The inverse
of an endomorphism in the countable atomless BA is way deeper than
merely endomorphism. To see this, recall that the p-adic topology
is the Stone space of a countable atomless BA. Now recall Mahler’s
theorem.

TODO: monomorphisms, epimorphisms, hemimorphisms (minterms)

CHAPTER 6

NSO: Nullary Second Order Logic

6.1. Overview

Consider the LTA of sentences in some logical language. This LTA
is a BA that comes with the theory of BA. The sentence ∀x∃y.xy′ = 0
in the language of BA interpreted in some LTA, would mean “forall
sentence x exists a sentence y s.t. x entails y”. So we can immedi-
ately see how the BA theory of an LTA is a theory that speaks about
sentences of some language, where those sentences are not accessible
syntactically, but abstracted to merely BA elements.

Countable atomless (CA) BAs arise naturally in logical languages.
cf. remark 1.4 and recall that almost all languages of interest are
countable. All CA BAs are therefore isomorphic, and moreover, all
atomless BAs are elementarily equivalent.

So, if we manage to take a language that makes a CA BA (or at least
atomless BA), and we’re able to make the language of BA interpreted
in that LTA a CA BA as well, then we have a language that refers to
its own sentences, their Boolean combinations, logical equivalence, and
truth.

This, in sharp contrast to the setting of Tarski’s undefinability of
truth: that impossibility result assumes that we have direct access
to the syntax of the sentences, represented, e.g., by a Godel number.
However in our setting sentences are abstracted, so much so, that they
make merely BA elements.

Remark 6.1. How can we have a theory of BA in which its own
LTA makes an atomless BA? One trivial, yet not so useful example, is
to take all formulas with unbounded number of free variables. A more
userful approach is to add infinitely many uninterpreted constants. An-
other approach would be to incorporate in the signature infinitely many
homomorphism and hemimorphism symbols. It is even easier if the lan-
guage is extended even further to have a time dimension, cf. remark
??.

55

6.2. THE CONSTRUCTION 56

6.2. The Construction

As hinted above, we shall not merely present a language, but a
language-extension mechanism. And as one would already suspect from
the previous section, this extension preserves decidability, let alone con-
sistency. We further consider extending many languages at once, and
it is indeed yet another feature of our construction to allow languages
to co-exist in one unified language, albeit, of course, the interaction
between those languages is very limited. However one important way
in which those languages can interact is by defining (BA) homomor-
phisms and hemimorphisms between them, as described in section §4.4,
and of course cartesian product (section §4.2). Referring to many BAs
at once is easily done by considering the many-sorted theory of BA.

Fix arbitrary languages (the “base logics”) in which their formulas
(or sentences), up to logical equivalence, make a BA. Then we can con-
sider the many-sorted BA theory interpreted in those BAs. Constants
in that languge would be formulas in the base logics. Quantification
would take the same semantics of quantification over arbitrary BA el-
ements. If the base logics make an atomless BA, then the extended
language has decidable satisfiability iff the base logics have. Otherwise
decidable model counting is required, or more precisely, when seen as
a BA, to tell whether an element is a disjunction of at least n distinct
atoms (as can be seen from section §2.2).

Denote the extended language by NSO [L1, . . . ,Ln] where NSO
stands for Nullary Second Order (though not under the usual seman-
tics of nullary relations). We can obtain a language that quantifies over
its own formulas (quotiened by logical equivalence) as follows. First,
NSO [L1, . . . ,Ln] can already quantify over formulas in L1, . . . ,Ln in
the standard fashion of quantification in BA. In this setting, each NSO
formula is either true or false, because it is interpreted in a fixed model
(being the BA which is the LTA of the base logic), and therfore make
a small (only two-element) BA which is typically still far from being
elementarily equivalent to the BA of the base logics. To obtain a richer
BA from formulas in NSO [L1, . . . ,Ln] we can simply enhance it with
infinitely many constant and/or relation and/or function symbols, pos-
sibly in a decidability-preserving fashion, e.g. in the ways mentioned in
the introduction. Assume NSO [L1, . . . ,Ln] is properly extended such
that it now makes an atomless BA (and other kinds of BA are treated
similarly). Constants now may be formulas in NSO [L1, . . . ,Ln] ap-
pearing inside curly brackets in order to avoid syntactic ambiguity, and
handling of quantifiers for the sake of a decision procedure can be done

6.3. SPLITTERS 57

by means of the quantifier elimination decision procedures from chap-
ter 2. The basic syntax of NSO [L1, . . . ,Ln] (before being extended in
any way that makes it an e.g. atomless BA) is therefore

ϕ := ∃var : sort.ϕ|ϕ ∧ ϕ|¬ϕ|bf = 0

sort := L1| . . . |Ln|NSO [L1, . . . , Ln]

bf := var|
{
ϕsort

}
|0|1|bf ∩ bf |bf ′

where ϕL means any formula in the language L. Each bf may only
contain variables and constants from the same sort. The deep-most
level of formulas in [nested] curly brakcets will be either a formula
in L1, . . . ,Ln or a formula in the language of BA in which the only
constants appearing the formula are either 0 or 1. It is then interpreted
as a formula over arbitrary atomless BA since they’re all elementarily
equivalent.

6.3. Splitters

In the setting of NSO, it is commonly desired to calculate a splitter
ψ for a formula ϕ. Suppose ϕ (x) is a formula in the language of BA and
we look for ϕ s.t. ∀x.ψ (x) → ϕ (x) but ∃x.ψ (x) and ∃x.ϕ (x)∧¬ψ (x).
So ψ puts more strictly constraints on x but still has a satisfying as-
signment. wlog assume ϕ is quantifier-free. Suppose ϕ is in DNF. If
one clause is subsumed by the other, simplify accordingly (we would
then say that the DNF is reduced). If more than one clause left, then
a splitter will choose one of the left clauses, and we’re done. So we’re
left with dealing with splitting a single DNF clause. Assume it is in
order normal form as in section 1.3.3. If a = b then no splitter exists
(at least not a good splitter, in the case the language is extended to
make an atomless LTA). If a < b then it is always possible to choose
some constant t which does not equal ci, dj, for all i, j. Now add the
constraint x ̸= t.

CHAPTER 7

GSSOTC: A Temporal Logic

We devise a new, decidable, family of temporal logics over infinite
data values, where those values come with theories much richer than
merely equality, in particular with the theory of atomless Boolean Al-
gebras (as well as fixed finite ones though such a case does not amount
to a significant novelty). Further, this language enjoys the distinc-
tive ability to verify statements of the form “at each point of time, for
all inputs exist a well-defined output/state, possibly depending on the
previous output/state”. It also presents a new kind of decision proce-
dure, unrelated to automata, tableaux, or to any other decision method
known to the author.

To describe the language in simple intuitive terms: fix an atomless
BA and consider the theory of BA interpreted in this structure (with
interpreted constants as above so the LTA of this logic is the countable
atomless BA). Consider formulas with free variables xn−k, . . . , xn, yn−k, . . . , yn
where the x’s are understood as inputs and the y’s are understood as
outputs, and n is any time point (so it can be seen as a free variable
of sort N). So it describes connection between current and previous
inputs and outputs at each point of time. This is basically almost the
full language.

This technique works for any weakly ω-categorical language, as long
as it supports conjunction and quantification. However in the atomless
BA case we get the unique property of a language that can speak of its
own sentences, in the spirit of NSO.

7.0.1. Time-Compatible Structures. A sequence of elements
from some domain D can be seen as a function N → D. A function
between sequences is therefore of type (N → D) → (N → D). As cus-
tomary in many texts, [k] will denote the set {1, . . . , k}.

Definition 7.1. A function f : (N → D) → (N → D) between
sequences is prefix-preserving (alternatively time-compatible, TC) if for
all sequences p, s, if p is a strict prefix of s, then f (p) is a strict prefix
f (s). We extend this notion also for f : ([n] → D) → ([n] → D).

58

7. GSSOTC: A TEMPORAL LOGIC 59

Definition 7.2. A Time-Compatible (TC) Structure of length N ∈
N ∪ {∞} is a domain D with prefix-preserving functions DN → DN .

It should be clear that any computer program is a TC structure:
at each point of time it takes an input and outputs an output, while
the output may depend only on past and present inputs and outputs,
not future ones. This is why we refer to prefix-preservation as TC.

Remark 7.1. Due to the “lookback” ability, namely the dependence
on previous inputs and outputs, we don’t need to refer to the concept
of state, as it is subsumed by the concept of output.

Remark 7.2. In what follows we will deal only with infinite-time
TC structures (so N = ∞ in the above definition) unless stated other-
wise.

Remark 7.3. We will eventually be interested with functions from
tuples of sequences to tuples of sequences (all tuples of fixed finite size,
but the input tuple may be of different size than of the output tuple).
All definitions and results should apply mutatis-mutandis.

Remark 7.4. The setting can easily be extended to trees rather
sequences. It is done by allowing more than one successor relation,
and the same methods apply.

Definition 7.3. A TC function has bounded lookback (BL) of
length k ∈ N (or simply BL[k]) if exists m ≥ k (the recurrence point),
s.t. for each n > m, the output sequence at point n depends only on
the input and output sequences at points n − 1, . . . , n − k, as well as
the input at point n.

Corollary 7.1. If f is BL[k] then it can be expressed as a pair
of functions, one of type D2k+1 → D and another of type Dm → Dm

which is required to be TC.

Proof. By definition of BL functions, we can write f as a recur-
rence relation

[f (x)]n = g
(
xn, xn−1, . . . , xn−k, [f (x)]n−1 , . . . , [f (x)]n−k

)
(where x is the input sequence) with initial conditions of the form
[f (x)]i = . . . for 1 ≤ i ≤ k. This g is of type D2k+1 → D and together
with the initial conditions (which specify the behavior up until the
recurrence point), fully encodes f . □

Corollary 7.2. Given a pair of functions, one of type D2k+1 → D,
and another, which is TC, of type Dm → Dm, we can uniquely assign
to it a function of BL[k].

7. GSSOTC: A TEMPORAL LOGIC 60

7.0.2. Bounded Lookback and Recurrence Relations.

Corollary 7.3. Any formula (in virtually any logic) with 2k + 2
free variables defines a [possibly empty] set of BL[k] functions.

Proof. Assume k = 1 for simplicity. Consider ϕ (xn−1, xn, yn−1, yn).
We understand ϕ as defining a relation between inputs and outputs at
current time (xn, yn respectively) and in the previous time xn−1, yn−1.
Intuitively, it defines at least one BL[k] function if the infinitary expres-
sion ∀x1∃y1∀x2∃y2

∧∞
n=2 ϕ (xn−1, xn, yn−1, yn) is satisfiable, alterna-

tively if it is true in a model of choice. This infinitary expression can be
given a concrete meaning by considering the first order theory contain-
ing all formulas of the form ∀x1∃y1 . . . ∀xN∃yN .

∧N
n=2 ϕ (xn−1, xn, yn−1, yn)

for all N . □

Note that in the infinitary expression obtained in the proof, quan-
tifiers can be pushed inside. This is a property of being TC, and this
ability is one cruicial point in the upcoming construction. Also note
that skolemization of this expression will yield something similar to the
type in 7.1.

Remark 7.5. The initial conditions are not expressed in the latter
corollary. But the corollary still holds. It defines a set of functions
that include functions per each possible initial condtions. This is not
an inherent limitation. We used this form only for simplicity at this
stage.

Fix a lookback parameter k ≥ 0. Xj will denote a tuple of vari-
ables of lookback k, so it’s a tuple of k + 1 variables of the form
xj−k, xj−k+1, . . . , xj. We assume that the first time coordinate is 0.

Definition 7.4. Given formula ϕ (in virtually any logic) with 2k+2
free variables xn−k, . . . , xn, yn−k, . . . , yn, define a recurrence relation ϕn

by ϕn+1 (Xk, Yk) := ϕ (Xk, Yk) ∧ ∀xk+1∃yk+1.ϕn (Xk+1, Yk+1) with base
case ϕ1 := ϕ (Xk, Yk).

Remark 7.6. Observe that ϕn (Xk, Yk) actually says that exists a
BL[k] function between sequences of length n + k, where the k initial
positions in the sequences are left as free variables.

Note that ϕn has a form of monotonicity wrt n: if exists a TC
function between sequences of lentgh n + 1, and the function satisfies
ϕ, then clearly exist such a function for sequences of length n.

Clearly, if ∀x0∃y0 . . . ∀xk∃yk.ϕn (Xk, Yk) for all n, then ϕ defines a
nonempty set of functions in the spirit of corollary 7.3. The crux of our
construction is the observation that if the underlying logic is weakly

7. GSSOTC: A TEMPORAL LOGIC 61

ω-categorical, then there are only finitely many ϕn’s up to logical equiv-
alence, hence decidability and decision procedure are immediate.

7.0.3. Guarded Successor. Observe that a formula of the form
ϕ (Xk, Yk) can be given a direct BL[k] semantics also by adding a sort
of natural numbers with the successor relation s, and function symbols
f : N → D and F : (N → D) → (N → D), where F is required to be
prefix-preserving, and writing ϕ as

∀t0, . . . tk.

[
k−1∧
i=0

s (ti, ti+1)

]
→ ϕ (f (t0) , . . . , f (tk) , F (f) (t0) , . . . , F (f) (tk))

Definition 7.5. Fix a logic L and let D be the sort it operates
over. First extend it with function symbols fi : N → D and Fj :
(N → D) → (N → D), where F is required to be prefix-preserving. If
ψ is any formula in this extended language, then

ϕ := ψ|ϕ ∧ ϕ|¬ϕ|∀t1, . . . , tm.

 ∧
(i,j)∈I

s (ti, tj)

→ ϕ

defines a second extension to the language which we shall refer to as
the guarded successor extention of L. The sublanguage of the form

ϕ := ψ|ϕ ∧ ϕ|¬ϕ|∀t1, . . . , tm.

 ∧
(i,j)∈I

s (ti, tj)

→ ψ

will be called the collapsed fragment. Its sublanguage of the form

ϕ :=
∨
k

∀t1, . . . , tm.

 ∧
(i,j)∈Ik

s (ti, tj)

→ ψ1
k

∧

∃t1, . . . , tm.

 ∧
(i,j)∈Jk

s (ti, tj)

 ∧ ψ2
k

will be called the normalized fragment. In all cases, the guard

∧
(i,j)∈I s (ti, tj)

is required to uniquely determines the relative position between each
ti, tj, and ψ, ψ1

k, ψ
2
k involve t1, . . . , tm only through application of f, F

(or several such functions), while f, F may also be applied to constants
from N.

Remark 7.7. Applying f, F to constants from N corresponds to
the above initial conditions.

Theorem 7.1. Any formula in a guarded successor extension can
be written as an equisatisfiable formula in the normalized fragment.

7. GSSOTC: A TEMPORAL LOGIC 62

Proof. It is easy to see that we can always reduce into the col-
lapsed fragment: this is immediate from the uniqueness of successor,
for example ∀n∃k.s (n, k) ∧ . . . is same as ∀nk.s (n, k) → For the
normalized form, first convert the formula to DNF at its outermost
level, so each literal may be a complex quantified formula, then col-
lapse the quantifier alternation as above, so each quantified formula is
either universal or existential. Moving to NNF we can consider uni-
versal and existential literals instead of positive and negative literals.
In each DNF clause we can collapse the universal parts into a single
one since universals distribute over conjunctions. Given an existential
literal ∃T.γ (T) ∧ ϕ while denoting T = t1, . . . , tk, we introduce a flag
e which is an additional output variable, and write
[∃t.e (t) = 0]∧∀T.γ (T) → [e (k − 1) = 1 ∧ (e (tk) = 0 ↔ (ψ ∨ e (tk − 1) = 0))]

where tk = max {t1, . . . , tk} is assumed. The existential part is there-
fore reduced into a single atom at the expense of introducing a new
output stream, and with introducing new universal literals which can
then be collapsed into a single one as above. Given multiple single-
atom existential parts

∧
k ∃t.ek (t) = 0 we can easily see that they are

equivalent to ∃t. [
⋃

k ek (t)] = 0 because each flag remains zero once it
becomes zero, so there is a point in time where all flags are eventually
zero, so the existential part can be merely a single ∃n.e (n) = 0 by
defining this additional flag in the universal part. By that we reduced
both the universal and the existential parts into a single one each. □

Remark 7.8. Note that here we had to use the assumption that we
are dealing with infinite-time structures, namely N = ∞. In the finite-
time case we will also need the end-of-sequence predicate ♯, resulting
with a slightly more complicated quantifier collapse. We omit this
simple derivation here for sake of brevity.

Corollary 7.4. Any formula in a guarded successor extension
without temporal existential quantifiers can be written in a free-variable
BL[k] form ϕ (Xk, Yk).

We of course bear in mind that if some language is decidable and
is weakly ω-categorical, then its extension with recurrence relations is
also decidable. Together with a method to handle the existential part
as described in the next section, we’ll conclude that:

Corollary 7.5. Satisfiability of a formula in a guarded succes-
sor extension is decidable if this fragment is obtained from a decidable
language L which is weakly ω-categorical, enhanced with the sort N,
guarded successors, N → D function symbols, and BL[k] function sym-
bols.

7. GSSOTC: A TEMPORAL LOGIC 63

We refer to this extended language as GSSOTC[L], where GSSOTC
stands for Guarded-Successor Second-Order Time-Compatible. The
second-order part is due to the following: given two sequences f, g :
N → D, we can declare a non-standard quantifer alternation ∀f∃g,
which would translate into ∃F∀f (so far just standard higher-order
skolemization), where F is a TC function between sequences. Those
function quantifiers are eliminated when converting the formula to the
free-variable form, which is then converted to function-free recurrence-
relation form.

Some easy extensions of this language were described above, we
reiterate them and add more: the end-of-string predicate ♯, having
multiple successor relations and by that considering trees rather se-
quences, having constant positions, so instead of e.g. ϕ (xn, xn−1, yn),
we have e.g. ϕ (x1, x2, xn, xn−1, yn), having explicit second-order quan-
tifiers that are eliminated by reduction to recurrence relations, and
finally, having richer quantifier alternation, e.g. for all keyboard in-
put at time n, exists a memory state at time n, s.t. for all network
input at time n, and so on, resulting in quantification of the form
∀x1∃y1∀z1∀x2∃y2∀z2∀x3∃y3∀z3

7.0.4. Decision Methods and Execution. In the spirit of re-
mark 7.3, we shall have several input and output sequences, each re-
ferred to as a stream.

Theorem 7.2. Given ϕ
(
X i

j, Y
i
j

)
where X are inputs and Y are

outputs, and i denoting the stream number, define the recurrence rela-
tion

ϕ0

(
X i

k, Y
i
k

)
:= ϕ

(
X i

k, Y
i
k

)
ϕn

(
X i

k, Y
i
k

)
:= ϕ

(
X i

k, Y
i
k

)
∧ ∀xk+1∃yk+1.ϕn−1

(
X i

k+1, Y
i
k+1

)
so ϕn means that exists a model with time points 0, . . . , n + k start-
ing with X i

k, Y
i
k . Then the reccurence relation is monotonic, namely

∀n∀X i
kY

i
k .ϕn+1 (X

i
k, Y

i
k) → ϕn (X

i
k, Y

i
k) and therefore has a fixed point.

Denote it by ϕ∞ (X i
k, Y

i
k). Given a model of ϕ with m time points, and

given each input X i at point m + 1, then an output Y i will have an
unbounded continuation satisfying ϕ iff ϕ∞

(
X i

m+1, Y
i
m+1

)
.

Proof. A model of size n+1 exists iff ∀x0∃y0 . . . ∀xn∃yn.
∧n

m=k ϕ (X
i
m, Y

i
m).

Leaving free the first k + 1 time points we can write

ϕn−k

(
X i

k, Y
i
k

)
:= ∀xk+1∃yk+1 . . . ∀xn∃yn.

n∧
m=k

ϕ
(
X i

m, Y
i
m

)

7. GSSOTC: A TEMPORAL LOGIC 64

= ∀xk+1∃yk+1 . . . ∀xn∃yn.ϕ
(
X i

k, Y
i
k

)
∧

n∧
m=k+1

ϕ
(
X i

m, Y
i
m

)
= ϕ

(
X i

k, Y
i
k

)
∧ ∀xk+1∃yk+1 . . . ∀xn∃yn.

n∧
m=k+1

ϕ
(
X i

m, Y
i
m

)
= ϕ

(
X i

k, Y
i
k

)
∧ ∀xk+1∃yk+1.ϕn−k−1

(
X i

k+1, Y
i
k+1

)
since replacing k with k+1 in ϕn−k (X

i
k, Y

i
k) := ∀xk+1∃yk+1 . . . ∀xn∃yn.

∧n
m=k ϕ (X

i
m, Y

i
m)

results with ϕn−k−1

(
X i

k+1, Y
i
k+1

)
:= ∀xk+2∃yk+2 . . . ∀xn∃yn.

∧n
m=k+1 ϕ (X

i
m, Y

i
m).

In case that ∀x0∃y0 . . . ∀xk∃yk.ϕ∞ (X i
k, Y

i
k) then due to monotonicity,

every k+1 subsequence of time points will have to satisfy ϕ∞ (X i
k, Y

i
k),

and any such subsequence can be extended arbitrarily due to the fact
that it is a fixed point indeed. □

Remark 7.9. The above formulation suggests that ϕ∞ is a normal
form of ϕ when understood as defining TC models.

Remark 7.10. A TC structure is a model of ϕ iff any subsequence
satisfies ϕ∞ when understood as a formula in the language of BA.

Remark 7.11. Given inputs at each point of time, satsifying out-
puts can be computed by substituting the known variables into ϕ∞,
and solving for the missing outputs. This is an execution method for
software specification in this language. Software specification in this
language is therefore directly executable as-is, using an oracle to de-
termine satisfying assignments to formulas in the language of atomless
BA. Finding satisfying assignments to a formula in the language of
atomless BA is a topic by its own, and is omitted here for sake of
brevity.

Corollary 7.6. Given two formula ϕ
(
X i

j, Y
i
j

)
, ψ
(
X i

j, Y
i
j

)
, then

the set of TC models of ϕ is a subset of those of ψ, iff ∀x0y0 . . . xkyk.ϕ∞ (X i
k, Y

i
k) →

ψ∞ (X i
k, Y

i
k).

This gives us an algorithm to decide whether ϕψ′ = 0 where ϕ, ψ
are seen as sets of TC models.

Remark 7.12. Combined with theorem 7.1 and its proof, this corol-
lary gives us a decision procedure for the full language GS. Each DNF
clause will have a single universal and a single existential (which is a
negated universal), so deciding emptiness for each clause comes down
to the last corollary.

Remark 7.13. Since ϕ∞ refers only to the universal parts, while
the existential parts may of course restrict the models, therefore we

7. GSSOTC: A TEMPORAL LOGIC 65

should, at execution time, check at each point of time whether we can
satisfy the existential parts. If so, we satisfy them indeed, just once.
If the formula is satisfiable then such point in time is guaranteed to
exist. If there are multiple existential parts in a DNF clause, then for
execution, we have to squeeze them into one using the flags as in the
proof of theorem 7.1, since those existential parts may depend on each
other.

Remark 7.14. The previous remark shows that if we execute a
program, then any finite execution time will be an initial segment of a
satisfying program. However if we’d like to synthesize a program which
admits the specification as-is, alternatively if we’d like the program
to admit the existential parts as soon as possible, we can write the
following recurrence relation:
χn

(
X i

k, Y
i
k

)
:=
[
ϕ∞
(
X i

k, Y
i
k

)
∧ ψ

(
X i

k, Y
i
k

)]
∨∀xk+1∃yk+1.ϕ∞

(
X i

k+1, Y
i
k+1

)
∧χn−1

(
X i

k+1, Y
i
k+1

)
which reads: exists a model satisfying ϕ∞ s.t. the existential part ψ is
satisfied after n steps. Then we compute χ∞ being the fixed point of χn.
Assume the fixed point is achieved after N steps. Then executing χ∞
(rather than ϕ∞) will satisfy the specification and guarantees satisfying
ψ after at most N steps.

Remark 7.15. When ϕ (Xn, Yn) is understood as a GS formula,
and ϕ is in the language of atomless BA intepreted in this very BA
of GS formulas (possibly with more algebras as the consrtuction is
closed under products), then NSO is a sublanguage of this language.
That’d be a software specification language where inputs and outputs
are nothing but sentences in this very language. This way we can
support the software update mechanism described in the introduction
as a crucial component for safe AI. Another way to look at it: a robot
is programmed in a language L and accepts commands form the user in
the very same language L. Now its internal program has to ask whether
the command is consistent with, say, safety conditions. It couldn’t do
so unless L is a temporal logic with inputs in L equipped with the
theory of BA.

CHAPTER 8

The Tau 1.0 Language

8.1. Overview

We are now ready to define a language that contains all the exten-
sions in this monograph, which is the Tau language. There is no one
Tau language: it depends on which base logics we extend. It therefore
consists of the following:

(1) Take GSSOTC over the BAs being:
(a) The base logics,
(b) Tau formulas themselves (with models being time-compatible

functions between sequences),
(c) NSO formulas over the base logics,
(d) The above logics with one free variable s.t. their quantifier

is simple,
(e) All BFs, SBFs, and their higher order counterparts, in

those BAs.
(2) In both the GSSOTC level and the NSO level, support:

(a) Cartesian product,
(b) Relations with converse,
(c) Simple quantifiers,
(d) Infinitely many homomorphism and hemimorphism sym-

bols in the signature,
(e) Infinitary operations as described,
(f) Recurrence relations,
(g) Infinitely many uninterpreted constant symbols, in order

to allow defining “terminology”.
(3) The most important base BAs are:

(a) All finite BAs, encoded as integers wrt bitwise operations,
and with addition implemented logically1,

(b) All finite BAs of order 22
n encoded as SBFs of finitely

many variables, while syntactically supporting substitu-
tion and composition,

1Multiplication can also be implemented but will be of very high complexity
unless we multiply only by constants, both are easy to implement using recurrence
relations.

66

8.2. TABLES 67

(c) Their higher-order counterparts,
(d) The countable atomless BA SBF.

8.2. Tables

The basic idea is to support functions 2n → B where B is any BA
supported in the Tau language (including products algebra of algebras
thereof). This encodes a set of tuples (in the case of product, or 1-tuple
if no product is used) where each tuple has an n-bit identifier (possibly
taken from prefix codes). Since in this formulation all keys have a value,
we set the default value to be zero. It is easy to see how to directly
implement this in the Tau language, however we’re interested in fixing
some syntactic sugar that’ll give rise to implementation optimizations.
The first kind of atomic formula is of the form

T1 = set (T2, k, v)

which means that table T1 is simply the table T2 where the value in
key k is set to v, overriding any previous value. It is a conservative
extension because it can be expressed as

T1 (k1, . . . , kn) = v∧

∀x1, . . . xn.

[∧
i

(xi = 0 ∨ xi = 1) ∧ xi ̸= ki

]
→ T1 (x1, . . . , xn) = T2 (x1, . . . , xn)

where T1, T2 are of type BF.
An even more succinct representation is where the table is of the

form 22
n → B so the key k : SBF [n] is an SBF with n variables. The

above atomic formula could then be expressed as

T1 (k) = v ∧ ∀x.x ̸= k → T1 (x) = T2 (x)

For another kind of atomic formula:

T1 = select (T2, ϕ (v))

which means that T1 contains all values v in T2 that satisfy the formula
ϕ (v). This is again easily expressed as

∀k∀v. (v = T2 (k)) → (ϕ (v)?T1 (k) = v : T1 (k) = 0)

Another atomic formula would be

u =
⋂

v|ϕ(v)

T

which is an abuse of notation, and intended to mean: take all values v
in T that satisfy ϕ (v) and equate their conjunction in u. To this end

8.3. POINTWISE REVISION 68

we first use select, and then we’re left with computing u =
⋂

v T which
can be expressed as

u =
⋂
k∈2n

T (k)

however to avoid a formula of exponential length we can write a recur-
rence relation

fn (T) = fn−1 (T |kn = 0) ∩ fn−1 (T |kn = 1)

and if the implementation allows the user to specify that certain re-
currence relations will be unfolded only during runtime, it is easy to
see that in many cases, the execution of that recurrence relation will
not take exponential time. Clearly recurrence relations will have to be
extended to also iterate over a fixed span of argument identifier.

Next we move to intersection and symmetric difference of tables
seen as set of tuples. For intersection:

T1 = common (T2, T3)

we can express as

∀k∀v. (T1 (k) = v ∧ T2 (k) = v)?T1 (k) = v : T1 (k) = 0

and similarly for symmetric difference. Next we move to pointwise
Boolean operations in tables. This is readily implemented by simple
T1 = T2 ∩ T3 etc. There isn’t even a need for quantification over keys
as this coincides with the usual Boolean operations over BFs.

For internal optimization, we convert the formula to implicational
form where those new atomic formulas are the only ones in the impli-
cants. This can be done in CNF and BDD forms. When the condition
is triggered, an internal table modification is performed.

8.3. Pointwise Revision

Given a Tau specification (spec), we can execute a candidate prog-
arm that meets this spec. Suppose we’d like to support a “software
update” feature. Another use case of this scenario is a robot that ac-
cepts commands from the user, while those commands are nothing but
change of spec, and while the robot itself is programmed in Tau. To
support this we add an extralogical operation of update: whenever a
certain output stream is assigned a Tau BA element which is nonzero,
it automatically becomes the new spec, and the execution backend
stops executing the current spec and continues to run the new spec
(the “update”).

However each spec may have many programs that satisfy it. How
to choose one program? We combine an answer to this question with

8.4. UNINTERPRETED CONSTANTS 69

an answer to another problem: suppose the update (or the robot’s
command) is only intended to be some change or addition, and we don’t
want the user to specify the whole program or robot behavior from
scratch with each update. Mitigating such sitation is done by what
we’ll refer to as pointwise revision. Given two Tau formulas ϕ (xn, yn)
and ψ (xn, yn), where x is an input stream and y is an output stream
(and no lookback but that’s wlog and for simplicity of presentation),
define

χ = ϕ ∗ ψ
by

χ (xn, yn) := ψ (xn, yn) ∧ [(∃t.ϕ (xn, t) ∧ ψ (xn, t)) → ϕ (xn, yn)]

this reads as follows: at each point of time n, there may be many
possible outputs yn that satisfy the spec. We choose an output that
always satisfies ψ, but we prefer the outputs that also satisfy ϕ. This
implies that the new spec will take as much as possible from the be-
havior of the old spec, as long as the new spec is satisfied, and indeed
this preservation is easily seen to be maximal.

One more enhancement of the above setting is in place. Instead
of assigning to an output stream the new spec, we assign to it a for-
mula with a dedicated uninterpreted constant typed as an element of
the Tau BA. Then all possible interpretations of this constant are ad-
missible updates. To perform pointwise revision we need to choose
one interpretation. We have the freedom to choose either a [close to]
maximal or a [close to] minimal solution (cf. e.g. lemma 3.4). The
former will preserve as much as possible from the previous spec, while
the latter the least possible.

A broad extension of this idea is as follows. It might be that ψ is
unsatisfiable in the sense that it is not the case that for any input exists
a time-compatible output. However it might be that for some inputs
exist outputs indeed, in which case we’d prefer them over outputs of
ϕ, but otherwise we can use ϕ. The extended operator is therefore

χ (xn, yn) :=
(∃t.ψ (xn, t)) → ψ (xn, yn)∧
(¬∃t.ψ (xn, t)) → ϕ (xn, yn)∧

(∃t.ϕ (xn, t) ∧ ψ (xn, t)) → ϕ (xn, yn)

8.4. Uninterpreted Constants

Here we refer to uninterpreted constants taken from the BA of Tau
formulas. We’re interested in adding two dimensions to those con-
stants: time and depth. Time dimension will simply mean that they
are indexed by time, just like the inputs and outputs xn, yn, and are

8.5. DISTRIBUTED SYSTEMS 70

considered as output streams (as they’re implicitly existentially quan-
tified). The depth dimension is much more involved. It refers to depth
wrt curly brackets. So if c is a constant and we write a formula of the
form

f (c, {g (c) = 0}) = 0

where {g (c) = 0} is a standard interpreted constant, we’d like c in
depths 0, 1 to refer to the same object. We don’t know how to solve
such a case if it is even solvable. An easier case takes the form

f (cn, {g (cn−1) = 0}) = 0

which apparently makes things even worse: now we share not only c
across curly brackets, but also n. A more general case would take the
form

ϕ (cn, {ψ (cn−1)})
Writing this as our usual recurrence relation we obtain

ϕ2 (c1) = ∃c2.ϕ (c2, {ψ (c1)})

ϕn (c1) = ∃c2.ϕn−1 (c2) ∧ ϕ (c2, {ψ (c1)})
we observe that the quantifier ∃c2 can easily be eliminated, and weakly
ω-categorigicity is going to be used wrt ψ, assuring finitely many log-
ically equivalent formulas. We conclude that even though the depth
dimension seems unsolvable as for itself (even for NSO only), yet com-
bined with the time dimension and using the depth dimension only wrt
the past, we obtain a richer yet decidable language. However a new
syntactic construct will have to be added to indicate that n is shared
across curly brackets. But even still, ϕ cannot depend on cn−1 and
therefore cannot share any information with {ψ}. To this end we rely
on pointwise revision. We assume an update extralogical builtin per
each constant symbol. Now the meaning of cn−1 can be incorporated
into the execution of ϕ. There are two ways to do wo: one involving
the revising formula will be the refication of the constant according to
section 4.7.1: a constant describes a set of sets of programs, and we
take the union of those sets and describe them as a formula α. So
the revising formula will be c = {α}. A cleaner way is to existentially
quantify all other constants in ψ resulting with a formula β (c), and
then the revised formula is ϕ ∗ β (c).

8.5. Distributed Systems

Suppose we’d like to specify not just a single program but many
clients orchestrating in a network. We shall refer to this as network
specification, in contrast to software specification. This can be done by

8.5. DISTRIBUTED SYSTEMS 71

having a Tau formula with one input and two output streams. Each of
those is of type table (as in section §8.2) with the following structure:

• The inputs tables In which has one column being the client
id (finite bitstring), and the second column being the [human]
user input to that client.

• The outputs tables Pn which has one column being the client
id (finite bitstring), and the second column being the [human]
user output in that client.

• The messages tables Mn with four columns: message id, source
client id, destination client id, and the message itself.

The client id may be simply IP and port. The message id is for the
case where multiple messages between two endpoints may occur at each
point of time. Clearly the dependency structure here is nonstandard:
the output of each client depends only on its inputs and on the mes-
sages it gets. Deciding satisfiability of such a specification (namely
whether a network admitting the specification exists) therefore quickly
comes down to Henkin quantifiers which are treated in section §4.10.
Extracting the Skolem functions as in that section, also allows us to
extract a client specification from the network specification.

Exercises

(1) Show that f (f (f (x))) = f (x) for any BF f .
(2) Show that f (x+ y + z) = f (x) + f (z) + f (z) for any BF f .
(3) Show that ∃x.f (x) = 0 iff f (f (0)) = 0, and that ∀x.f (x) = 0

iff f (f (1)) = 0, for any BF f .
(4) Show that an SBF has a zero in some BA iff it has a zero in

all BAs.
(5) Show that in atomic BA, a BF has a zero which is an atom iff

f ′ (1) ̸= 0 and |f (0)| ≤ 1. Show that all its zeros are atoms
iff f (0) = f ′ (1) and |f ′ (1)| = 1, in which case it has a single
zero.

(6) Show that f (x) = f (0) + x∂f
∂x

, for any BF f (this is Davio’s
decomposition which gives rise to the Reed-Muller decompo-
sition).

(7) There are 22
n SBFs of n variables. But 22n =

(
22

n−1
)2

as well

as 22n = 1+
∏n−1

k=1

(
22

k−1
+ 1
)
. Prove the last identity. Those

two representations of 22n hint to two possible decompositions
of SBFs. Find out two such matching decompositions.

(8) Let B be the BA of SBFs with unboundedly many variables, so
each SBF depends only on finitely many variables x1, x2, . . . ,
but unboundedly so. Show that B is an atomless BA.

(9) Let B be the BA from the previous exercise. Show that any
homomorphism B → B can be written as a set of substitutions
xi → fi where fi is an SBF, so any homomorphism takes an
SBF and replaces a variable (or several) with SBFs.

(10) Let B be the BA from the previous exercise. Show that all
ultrafilters (namely all homomorphisms into the two-element
BA) can be identified with the set of all infinite bitstrings.

(11) Prove that f (y) ≤ x ≤ g (y) iff x′f (0) + xg′ (0) ≤ y ≤
x′f ′ (1) + xg (1).

(12) Prove that x ≰ f (y) iff xf ′ (0) ≰ y ∨ y ≰ x′ ∪ f (1).
(13) Prove that f (y) ≰ x iff x′f (0) ≰ y ∨ y ≰ x ∪ f ′ (1).

72

EXERCISES 73

(14) Show a direct proof that the system
ax ̸= 0

bx′ ̸= 0

has a solution iff a, b are not equal atoms.
(15) Prove theorem 3.1.
(16) Prove proposition 2.1.
(17) Prove theorem 3.2.
(18) The system in theorem 3.2 can be used to solve systems in

which only SBFs appear, but apparently not BFs. Show that
this is not the case, namely show how to convert the general
BF case to the theorem’s setting.

(19) Prove theorem 3.4.
(20) Prove lemma 3.4.
(21) Prove the correctness of the algorithm appearing after theo-

rem 3.1.
(22) Prove theorem 4.1.
(23) Show that for any BF f , defining a sequence by means of

ϕ (x, y) := f (x, y) = 0 and checking whether a sequence of
lengths 2, 3, . . . exists, converges after two iterations. This
demonstrates that satisfiability of GSSOTC formulas may take
a surprisingly small number of steps.

Appendix I: The Two-Variable Fragment with
Counting

Pratt-Hartmann has shown how to reduce the satisfiability prob-
lem of the two-variable fragment with counting C2 to an integer linear
programming problem. Here we present his complete algorithm to a
special case (that still covers the full fragment) but with slightly mod-
ified terminology and proof. This work was made mainly by [pp].

We are interested in determining whether

f (C1, . . . , Cn, H1, . . . , Hm,M1, . . . ,Mm) = 0

has a solution, where f is a BF, Hi =M−
i , and each Hi is a functional

relation, and C is a unary relation (so a cartesian product is involved
here). More explicitly, we want a set of minterms to each equal zero:(

CAi × CBi
)
HUiMVi = 0

We refer to CAi as the domain of the minterm, and to CBi as the range
of the minterm. Note the abuse of notation here: in the last equation,
C,H,M are tuples each. We follow a special case of the algorithm
by Pratt-Hartmann and reduce it to an integer linear programming
problem. It is a special case because of two points: he considered
a more general counting part, but we count here only up to 1. The
second point is that non-functional relations don’t appear here as we
can eliminate them using the above method.

A star-type is a set of minterms in which each Hi appears positively
exactly once. The strategy is to find a set of star-types s.t. all minterms
in them are nonzero. The idea behind star-types is as follows: suppose
y = hi (x). Then the pair (x, y) appears in precisely one minterm (as all
minterms are disjoint). Now for each j exists [unique] z s.t. z = hj (x).
If x = z then Hi, Hj should appear positively at the same minterm,
otherwise on different minterms.

The number of star-types with k minterms and with fixed domain,
is

sAi
(n,m, k) = 2n2m2k−1sAi

(n,m− 1, k − 1) + k2ksAi
(n,m− 1, k)

74

APPENDIX I: THE TWO-VARIABLE FRAGMENT WITH COUNTING 75

because if we add a new minterm to incorporate a new functoinal rela-
tion, there are 2n possible unary parts, 2m ways to write the converses
in the new minterm, and 2k−1 to incorporate the new functional relation
converse into the existing minterms. If we don’t add a new minterm,
we have k choices to where to add it positively, and 2k ways to append
its converse. Now

sAi
(n,m) =

m∑
k=1

s (n,m, k) = n22m
m∑
k=1

2k−1sAi
(n,m− 1, k − 1)+

m∑
k=1

k2ksAi
(n,m− 1, k)

and s (n,m) = 2nsAi
(n,m).

sAi
(n,m) < 2n(m+1)2m

2

Bm < 2m
2

First we treat the problem under the setting of chromatic Z-differentiated
structure, where Z = 3m. This is done by [virtually] assuming that
there are . . . more unary relations.

Now we need to find a set of nonempty star-types (so all minterms in
them are nonempty), that do not contain minterms that are required
to be empty by f . Further they have to satisfy conditions on the
cardinality of minterms, where each star-type is counted as with fixed
domain:

(1) The cardinality of a minterm is the sum of cardinalities of all
star-types containing that minterm.

(2) The cardinality of a minterm does not change by taking the
converse. [C1]

(3) The cardinality of each minterm in unary relation is either
0, 1, > 3m. Each unary relation (or minterms thereof) is the
sum of all minterms containing it. [C3]

(4) No star types contains a zero unary minterm. [C2]
(5) If the domain in some minterm is of size 1, then among all

minterms containing certain functional relation positively and
containing this domain, all are empty except exactly one that
has size 1. Moreover, if one star-type contains the same range
more than once, then the cardinality of the range is at least the
number of minterms with that range in that star-type. [C2]

(6) For each star-type, the number of minterms in it with domain
C and range D where |C| = 1, and all M ’s appear negatively
in it, is no greater than the number of star-types with domain
D and no minterm in them has range C. [C4].

(7) If f implies (C ×D)H0M0 = 0, then in the previous condi-
tion, replace “no greater than” with “equals”, even for the case
|C| > 1. [C6]

(8) If f implies (C ×D)H0M0 = 0, then |C| ≤ 1 or |D| ≤ 1. [C5]

APPENDIX I: THE TWO-VARIABLE FRAGMENT WITH COUNTING 76

Definition 8.1. A relational minterm is an expression of the form(
UA × UB

)
HCMD

where A,B are bitstrings of length n and C,D are of length m. If
C ̸= 0 (namely the bitstring contains at least one 1) then the minterm
is called functional. If C ̸= 0 ∧ D ̸= 0 then it is bi-functional. The
domain and range of the minterm, respectively, are UA, UB, and by
abuse of terminology, we sometimes refer to them as simply A,B. The
set of functional minterms will be denoted by Tf , and of bi-functional
minterms by Tb. We denote by T0 the set of all minterms where all
H,M appear negatively. For a minterm T we will use TA, TB, TC , TD

to refer to its distinct components.

In this chapter we shall refer to relational minterms as merely minterms.
Each minterm is a binary relation over some domain. So we can write
(a, b) ∈ T .

Definition 8.2. A relational counting problem Z is a set of minterms
which is closed under converse, under the following constraints:

(1) The cardinality of all minterms in Z is zero.
(2) Each Hi is a functional relation, and H−

i =Mi.

Definition 8.3. A star-type S is a set of functional minterms s.t.

• (S1) All minterms have the same domain,
• (S2) each H occurs positively exactly once in S,
• (S3) if T ∈ S and T ∈ Tb then TA ̸= TB,
• (S4) if T1, T2 ∈ S and T1, T2 ∈ Tb then TB

1 ̸= TB
2 .

The last two condtions are called the chromaticity conditions. In every
model, define [S] =

⋂
T∈S π1 (T). The range of a star-type is the union

of the ranges of all minterms in it.

Definition 8.4. A solution to a relational counting problem Z is
a set S of star-types s.t. no star-type contains a minterm from Z,
together with a positive extended integer xS ∈ N ∪ {∞} assigned to
each star-type, under the intention that in a model, xS = |[S]|, and

•

(8.5.1) ∀T ∈ Tb.
∑

S|T∈S

xS =
∑

S|T−∈S

xS

.
•

(8.5.2) ∀A.SA = ∅ → ∀S ∈ S.A ⊈ ran (S)

APPENDIX I: THE TWO-VARIABLE FRAGMENT WITH COUNTING 77

•

(8.5.3) ∀A.SA ⊂ S1 → ∀S ∈ S∃≤1T ∈ S.TB = A

•

(8.5.4) ∀A.
∑
S∈SA

xS ≤ 1 ∨
∑
S∈SA

xS ≥ 2m+ 1

•

(8.5.5) ∀AB∀S ∈ S1 ∩ SA.
∑

S1∈SB |A⊈ranS1

xS1 ≥
∣∣{T ∈ S\Tb|TB = B

}∣∣
•

(8.5.6) ∀T ∈ Z ∩ T0.STA ⊂ S1 ∨ STB ⊂ S1

•
(8.5.7)
∀T ∈ Z∩T0∀S ∈ S1∩STA .

∑
S1∈S

TB |TA /∈ranS1

xS1 =
∣∣{T1 ∈ S\Tb|TB

1 = TB
}∣∣

Where the set of all star-types in S with domain A is denoted by SA,
and S1 is the set of star-types S ∈ S with xS = 1, s.t.

S ∈ S1 ∩ SA → |SA| = 1

or in words, if the domain of a certain star-type is a singleton, then
there is only one star-type in S with that domain.

We will show that every such solution is a model and vice versa.

Proposition 8.1. For any unary relation U , any functional rela-
tion H, and any binary relation R,

|U | = 1 → |(U × 1)HR| ≤ 1

Proof. Otherwise the range of a singleton element by a function
will not be a singleton. □

Corollary 8.1. If (a, b) ∈ H1R1 and (a, c) ∈ H1R2 then b = c.

Proposition 8.2. If T1, T2 are distinct minterms and both contain
Hi positively then π1 (T1) π1 (T2) = 0.

Proof. Suppose a ∈ π1 (T1) π1 (T2). Then (a, hi (a)) ∈ T1T2, but
T1T2 = 0. □

Lemma 8.1. In every chromatic model of Z, for every domain ele-
ment a, there is unique S s.t. a ∈ [S].

APPENDIX I: THE TWO-VARIABLE FRAGMENT WITH COUNTING 78

Proof. Since ∀a∀i∃!Ti. (a, hi (a)) ∈ Ti (because each pair is con-
tained in exactly one minterm), put S =

⋃
i {Ti}. Each Ti must be

functional as otherwise it doesn’t contain any hi (a). If Ti ̸= Tj and
Ti, Tj ∈ S then Tj does not contain Hi positively by the previous propo-
sition. So S satisfies S1,S2, while S3,S4 follow from the chromaticity
assumption. For uniquess, if a ∈ [S1] ∩ [S2] then it belongs to the
domain of all minterms in both star-types, and suppose minterm T is
in S1 and not in S2. Say T contains Hi positively. But in S2 there is
another minterm, different than T , containing Hi positively, which is a
contradiction by the previous proposition. □

Proposition 8.3. ∀T ∈ Tf . |T | = |π1 (T)|.
Proof. |T | ≥ |π1 (T)| because a projection may never be larger,

and |T | ≤ |π1 (T)| is immediate from the functionality assumption. □

Corollary 8.2. In every model, for every T ∈ Tf ,

|T | =
∑

S|T∈S

xS

Proof. Since every domain element belongs to the domain of a
unique star-type, so it belongs to the domain of all minterms in that
star-type, so

∑
S|T∈S xS = |π1 (T)|, and use the previous proposition.

□

Proposition 8.4. If a nonzero functional minterm has a singleton
domain, then that minterm has a single pair.

Proposition 8.5. If two different nonempty minterms have the
same singleton range, then their domains are disjoint.

Proof. Otherwise they share a common pair. □

Proposition 8.6. If

A×B ⊆
m⋃
i=1

Hi ∪Mi

then
|A×B| ≤ m (|A|+ |B|)

Proof. Clearly |(A×B)Hi| ≤ |A| and |(A×B)Mi| ≤ |B|, so∣∣∣∣∣(A×B)
m⋃
i=1

Hi ∪Mi

∣∣∣∣∣ ≤
m∑
i=1

|(A×B) (Hi ∪Mi)|

≤
m∑
i=1

|(A×B)Hi|+ |(A×B)Mi| ≤ m (|A|+ |B|)

APPENDIX I: THE TWO-VARIABLE FRAGMENT WITH COUNTING 79

□

Theorem 8.1. Existence of chromatic Z-differentiated model im-
plies C1-C6.

• (8.5.1) is immediate from the fact that converse preserves car-
dinality, and that the cardinality of a minterm is the sum of
cardinalities of all star types containing it, by the previous
corollary.

• (8.5.4) is immediate from the Z-differentiated assumption.
• For (8.5.2), if there is no star-type with a certain domain, then

that domain is empty (because each Hi is a total function, al-
ternatively because any domain element belongs to some star-
type), so it cannot appear as range of non-empty star-type
(again by totality).

• For (8.5.3), note that the domain of any minterm in any star-
type in S1, is a singleton. Now use 8.5.

• For (8.5.5), if UA = {a} and a ∈ [S], consider the set X ={
b ∈ UB| (a, b) ∈ T ∈ S\Tb

}
and using 8.4 and the disjointness

of minterms, then the cardinality of X is the same as the
cardinality of

{
T ∈ S\Tb|TB = B

}
. We’re left with showing

that ∑
S1∈SB |A/∈ranS1

xS1 ≥ |X|

and for this we show that

X ⊆
⋃

S1∈SB |UA⊈ranS1

domS1

Obviously X ⊆
⋃

S1∈SB
domS1 but no element in X has range

UA because (a, b) belongs to a functional minterm which is not
bi-functional, so it cannt belong to any bi-functional minterm
(by distjointness of minterms).

• For (8.5.6), if T ∈ Z ∧ TC = TD = 0 then all elements in TA

are connected to all elements in TB by at least one function
or inverse. If the cardinalities of TA and TB are both greater
than one, so by the Z-differentiated assumption,∣∣TA × TB

∣∣ = 1

2

(∣∣TA
∣∣ ∣∣TB

∣∣+ ∣∣TA
∣∣ ∣∣TB

∣∣)
≥ 1

2

[∣∣TA
∣∣ (2m+ 1) +

∣∣TB
∣∣ (2m+ 1)

]
> m

(∣∣TA
∣∣+ ∣∣TB

∣∣)
but by 8.6 we should have∣∣TA × TB

∣∣ ≤ m
(∣∣TA

∣∣+ ∣∣TB
∣∣)

APPENDIX I: THE TWO-VARIABLE FRAGMENT WITH COUNTING 80

• For 8.5.7, in the setting of proving necessity of equation (8.5.5),
and further assuming

(
UA × UB

)
H0M0 ∈ Z, we want to show

that
X =

⋃
S1∈SB |UA⊈ranS1

domS1

One side is already proved above. For the other direction, if
b ∈

⋃
S1∈SB |UA⊈ranS1 domS1 then it has a star-type S1 and b

is not in its range, so (b, a) cannot belong to any functional
minterm in S1, so (a, b) is either in a functional minterm, or
in
(
UA × UB

)
H0M0. The latter possibility is forbidden by

assumption. So b ∈ X by definition of X.
The model:

(1) The domain D is of size
∑

S xS. Arbitrarily and for every S,
assign the star-type S to xS elements, uniquely. Write a ∈ S
if a is assigned a star-type S. We assume that the domain is a
subset of the natural numbers, as we will need a linear order
among the domain elements.

(2) Each x ∈ D of star-type S is a member of domS. This defines
the unary relations in the model.

(3) The set of all elements that are assigned a star-type that con-
tains the minterm T will be denoted by DT .

(4) For each A where
∣∣UA

∣∣ ≥ 2m + 1 fix PA
1 , P

A
2 where

∣∣PA
1

∣∣ ≥
m ∧

∣∣PA
2

∣∣ ≥ m ∧ PA
1 ∩ PA

2 = ∅ ∧ PA
1 ∪ PA

2 = UA.
(5) Assume unary minterms are linearly ordered, so we can write

e.g. TA ≤ TB which would mean e.g. that A ≤ B where the
bitstrings A,B are considered as numbers.

(6) For each nonzero minterm T ∈ Tb (the ones that appear in
nonzero star-types) with TA ≤ TB (in order to avoid treating
T, T− in conflicting ways), clearly |DT | = |DT− | by 8.5.1. So
there is a bijection between DT , DT− . Let T be precisely such
a bijection (and correspondingly for T−). Note that TA ̸= TB

by the chromaticity assumption (so in particular the bijection
has no fixed-points), and similarly no pair is chosen to belong
to two different minterms, and also that T ̸= T−.

(7) For every A ̸= B and for every nonempty S with A = domS,
and every a ∈ S:
(a) If

∣∣UA
∣∣ ≥ 2m + 1 and

∣∣UB
∣∣ ≥ 2m + 1. Consider all

minterms T ∈ S\Tb, with TB = UB and for each such T
choose bT ∈ UB s.t. if A < B and a ∈ PA

i then bT ∈ PB
i ,

and if B < A and a ∈ PA
i then bT ∈ PB

3−i, and declare
(a, bT) ∈ T . Similarly set (bT , a) ∈ T−. We select bT s.t.

APPENDIX I: THE TWO-VARIABLE FRAGMENT WITH COUNTING 81

(a, bT) was not assigned to any other minterm beforehand
(including in the treatment of Tb). This is always possible
because there are at most m minterms in the star-type
assigned to a so we can always find such an element b in
PB
1 , P

B
2 .

(b) If
∣∣UA

∣∣ ≥ 2m + 1 and
∣∣UB

∣∣ = 1, for any T ∈ S\Tb with
TB = UB take bT to be the unique element in UB and
set (a, bT) ∈ T . This pair was not chosen before because
since SB ⊂ S1, 8.5.3 implies that

∀S ∈ S∃!T ∈ S.TB = B

so in the star-type of a there is only one minterm with
range B. Clearly also set (bT , a) ∈ T−. Note that T−

is not functional so it doesn’t belong to any star-type
(similarly in the previous step).

(c) If
∣∣UA

∣∣ ≥ 2m+1 and
∣∣UB

∣∣ = 0, then by equation (8.5.2),
S does not contain a minterm with range UB.

(8) For every A ̸= B and for every nonempty S with A = domS,
and every a ∈ S, if

∣∣UA
∣∣ = 1, for any T ∈ S\Tb with TB = UB,

take any b s.t. (a, b) was not previously assigned. If b ∈ UB

and its star-type is Sb, and UA ⊈ ranSb then such b was not
assigned in 6 or in 7. By 8.5.5 the number of such b is at
least

∣∣{T ∈ S\Tb|TB = B
}∣∣ which is the number of elements

needed.
(9) For all functional minterms T with TA = TB. Then

∣∣TA
∣∣ > 1

as otherwise equation (8.5.5) would evaluate to 0 ≥ 1. Then∣∣TA
∣∣ ≥ 2m + 1, call them t1, . . . , tk and recall that they are

natural numbers. To each ti we find

j ∈
m−1⋃
p=0

{(i+ p)modk}

s.t. (ti, tj+1) is not previously assigned, and declare (ti, tj+1) ∈
T ∧ (tj+1, ti) ∈ T−. Since

∣∣TA
∣∣ ≥ 2m + 1, T, T− will never

be assigned the same pair. We also know that exists such not
previously assigned pair because there are at most m minterms
in the star-type of ti, so there are at most m − 1 previously
assigned such pairs. For T−, none of this pairs was used for
T− because by definition of j, (ti, tj+1) ̸= (tj′+1, ti′) for any
i′, j′.

(10) For (a, b) ∈ UA × UB not yet assigned to any minterm, we
assign

(
UA × UB

)
H0M0 and we have to show that either this

APPENDIX I: THE TWO-VARIABLE FRAGMENT WITH COUNTING 82

minterm does not belong to Z, or such (a, b) don’t exist. If that
minterm is in Z then by equation (8.5.6)

∣∣UA
∣∣ = 1∨

∣∣UB
∣∣ = 1.

By symmetry it’s enough to consider
∣∣UA

∣∣ = 1. If Sa is the
star-type of a, then by equation (8.5.7)∑

S∈SUB |UA⊈ranS

xS =
∣∣{T ∈ Sa\Tb|TB = UB

}∣∣
so a minterm is already assigned to (a, b) since, if Sb is the
star-type of b and UA ⊆ ranSb, then a is the image of b over
some function, so are excluded from above sum in the lhs,
while the rhs describes already-assigned functions from a to b
in 8. The lhs guarantees that we assigned all such pairs.

Lemma 8.2. Ackermann lemma, the unary case: if C appears pos-
itively in ψ then

∃C∀x. [Cx→ ϕ (x)] ∧ ψ (C) ≡ ψ (C)Cx
ϕ(x)

and if negatively then

∃C∀x. [ϕ (x) → Cx] ∧ ψ (C) ≡ ψ (C)Cx
ϕ(x)

note that C does not appear in ϕ.

Corollary 8.3. Assume ψ is in NNF and has a non-atomic sub-
formula of the form ϕ (x), then it is equisatisfiable with replacing ϕ (x)
with Cx and rewrite ψ as ∀x.Cx→ ϕ (x) conjuncted with the modified
ψ.

Proposition 8.7. The formula

∀x.ϕ (x) ∨ ∀y.ψ (x, y) ∨ ∀z.χ (y, z)
is equisatisfiable with

[∀xy.Cx→ χ (x, y)] ∧ ∀xy.ϕ (x) ∨ ψ (x, y) ∨ Cy
Similarly

∃x.ϕ (x) ∧ ∃y.ψ (x, y) ∧ ∃z.χ (y, z)
is equisatisfiable with

(∃!x.Cx) ∧ [∃xy.Cx ∧ χ (x, y)] ∧ ∃xy.ϕ (x) ∧ ψ (x, y) ∧ Cy

Proposition 8.8. In the two-variable fragment and in a formula
in NNF, a subformula of the form

∀x.ϕ (x, t) ∨ ∀y.ψ (x, y) ∨ ∀z.χ (y, z)
can be replaced with

[∀xy.Cx→ χ (x, y)] ∧ ∀xy.ϕ (x, t) ∨ ψ (x, y) ∨ Cy

APPENDIX I: THE TWO-VARIABLE FRAGMENT WITH COUNTING 83

while maintaining satisfiability. Similarly

∃x.ϕ (x, t) ∧ ∃y.ψ (x, y) ∧ ∃z.χ (y, z)
then if this subformula appears under universal quantifiers, then is eq-
uisatisfiable with

[∀y.Cy → ∃z.χ (y, z)] ∧ ∃x.ϕ (x, t) ∧ ∃y.ψ (x, y) ∧ Cy
and if not, this formulation is still valid, but can be replaced with the
more efficient

(∃!x.Cx) ∧ [∃xy.Cx ∧ χ (x, y)] ∧ ∃xy.ϕ (x) ∧ ψ (x, y) ∧ Cy
In all cases, all but the last conjunct can be conjuncted from the

outside with the whole formula.

Proposition 8.9. The formula ∃x.ϕ (x) ∧ ∀y.ψ (x, y) is equisatis-
fiable with

(∃!x.Cx) ∧ [∀xy.Cx→ ψ (x, y)] ∧ ∃x.ϕ (x) ∧ Cx
and similarly for subformulas (assuming NNF) that do not fall under
universal quantifiers. Otherwise those subformulas can be replaced with

[∀xy.Cx→ ψ (x, y)] ∧ ∃x.ϕ (x) ∧ Cx
and moreover, the first conjunct can be conjuncted from the outside
with the whole formula.

Proposition 8.10. Assuming NNF, the subformula

∀x.∀y.ϕ (x, y) ∨ ∀y.ψ (x, y)

is equisatisfiable with

[∀xy.Cx→ ψ (x, y)] ∧ ∀xy.ϕ (x, y) ∨ Cx
similarly

∃x.∃y.ϕ (x, y) ∧ ∃y.ψ (x, y)

is equisatisfiable with

[∀x.Cx→ ∃y.ψ (x, y)] ∧ ∃xy.ϕ (x, y) ∧ Cx
and if the subformula does not fall under a universal quantifier, then
we can also write it more efficiently

(∃!x.Cx) ∧ [∃xy.Cx ∧ ψ (x, y)] ∧ ∃xy.ϕ (x, y) ∧ Cx

Bibliography

[pp] Pawel Parys, private communication.
[rud1] Rudeanu, “Boolean functions and equations”
[rud2] Rudeanu, “Lattice functions and equations”
[bro] Brown, “Boolean reasoning”
[mo] Marriot, Odersky
[kun] Kuncak
[rev] Revesz
[tar] Tarski
[koz] Kozen
[ck] Chang & Keisler
[giv] Givant
[hal] Hall
[kop] Koppelberg, “Handbook of Boolean Algebras”.
[hal] Halmos, 1962. Algebraic Logic. New York: Chelsea.

84

Index

atom, 11
atomic, 11
atomless, 11

BA (Boolean Algebra), 7
bad splitter, 30
BF (Boolean Function), 7
BL, bounded lookback, 59
Boolean Algebra (BA), 7
Boolean Function (BF), 7
Boolean Ring (BR), 7
bounded lookback, BL, 59
BR (Boolean Ring), 7

CA, Countable Atomless, 55
CBF, Conditional Boolean Function,

48
complexity, 16
Conditional Boolean Function

(CBF), 48
converse algebra, 36
converse polynomial, 37

diagonal-free converse algebra, 36

Elementary GSBE, 12

Generalized System of Boolean
Equations (GSBE), 12

good splitter, 30
GSBE (Generalized System of

Boolean Equations), 12
GSSOTC, 63
Guarded Successor, 61

Hall’s marriage theorem, 16
hemimorphism, 35

LGRS (Lowenheim’s General
Reproductive Solution), 13

Lindenbaum-Tarski Algebras (LTAs),
16

Lowenheim’s General Reproductive
Solution (LGRS), 13

LTAs (Lindenbaum-Tarski Algebras),
16

method of successive elimination, 14
minterm, 9
minterm normal form, 9
Monadic Algebra, 39

Order Normal Form, 15, 28

Pointwise Revision, 68
pointwise revision, 69

query, 38

Recurrence Relations, 48

SBF (Simple Boolean Function), 8
Simple Boolean Function (SBF), 8
Splitter, 57
splitter, 30
Stone’s Representation Theorem, 10
successive elimination, 14

TC (time-compatible) Structure, 59
Time-Compatible (TC)

Structure, 58

Uninterpreted Constants, 47, 55, 69

weakly ω-categorical, 48
wide, 45

85

