Tau-Chain and Agoras

Ohad Asor
(ohad@idni.org)
Editor: Prof. Dr. Avishy Carmi
(avishy@idni.org)

August 20, 2020

Draft for Community Review

Abstract

We describe the systems Tau-Chain and Agoras, the former being a peer-to-
peer network which is fully and effectively defined by its users, and the latter
being an economy built on those capabilities, facilitating economics of knowl-
edge among other supporting aspects. Tau is a next-generation intelligent social
network and discussion platform based on a newly proposed paradigm, termed
here Human-Machine-Human Communication, offering a logic-based set of so-
lutions to problems related to large-scale discussions, decision making, software

development, artificial intelligence, philosophy of law, and more.

I I Intelligent Decentralized
Networks Initiatives

IDNI 2020 All Rights Reserved.

www.idni.org

Editor’s Note

Intelligence is largely, perhaps entirely, a matter of appropriate selections. Intelligent
beings occasionally seek to augment their potency in making profitable decisions in
diverse settings, sometimes under weighty constrains. Nothing truly stands in the way
of a sufficiently intelligent entity but Nature’s limits on the manipulation and storage
of information. This observation renders intelligence as the only valuable resource.

When one speaks of intelligence one often distinguishes between humans and ma-
chines. It seems that in each case intelligence bears a different meaning, and indeed,
the ultimate goal of general artificial intelligence is to escalate machine intelligence to
human level. Intelligence is a rather complex term, encompassing many categories per-
taining to mental faculties and the intellect. One thing is, however, clear: it evolves
with time. Here, we may ask two questions. The first one is why should intelligence
at all evolve? and the second one is by what means. The answer to the first ques-
tion may be that as all other processes in nature, so does intelligence strive to flourish
by constantly confronting new conditions that carry the imperishable promise of new
problems. The answer to the second question is that in most part intelligence evolves
by means of communication between individuals, cultures, and species.

Humans have excelled in communications. They have developed a diverse language
designed to discuss problems and their potential solutions. And yet it seems that the
most pressing problems, those which concern large social constructs such as societies
and nations, cannot be solved via discussions. If we follow the above reasoning the limits
on the scale of discussions makes a major barrier in the course of human evolution.

Tau-chain, or Tau, is a system designed to ultimately solve the problems inherent
in scaling up discussions. It does so by the aid of machines. This, however, comes with
a significant cost. The machines in the Tau network should have access to meaning. In
other words, humans and machines speak in languages that they both understand. This
paper provides justifications why should formal logic be used in this kind of human-
machine-human communication. Importantly, it postulates there is no single language
adequate for all means and hence suggests a (Tau) meta-language, TML, designed for
constructing languages and translators among them. This underlies the concept termed
here the internet of languages.

Tau truly is a self-amending system governed by the process of social choice. On

Tau users discuss and decide on various issues and that includes Tau’s own code. Tau
hence evolves based on the collective decisions of its users. In the paper this aspect is
paralleled with the process of legislation. Indeed, society constantly changes its rulers,
its laws and behaviours, by casting votes as part of various electoral systems. The key
difference from Tau is that in Tau users can equally discuss what to choose from rather
than just choosing. Again, this is made possible as Tau is designed to retain those
precious traits of small scale discussions, such as sharing opinions and choice about
choice, on a large scale settings.

To deal with the paradoxes of self-reference, TML is designed having in mind the
three laws of laws. They are characterizations of a formal logic of law, for as mentioned
above the Tau process is akin to legislation. The three laws, decidability, closure under
Boolean operations, and self-interpretation, furnish the coexistence of decidability and
unrestricted recursion -- two highly desired properties in the process of legislation. They
also point at specific logics that adhere to the three laws.

It does not end here. To sustain a social construct one needs an economy underneath.
The knowledge formalized on Tau is suited for sustaining an economical infrastructure,

a knowledge economy. To quote from the paper:

Formalizing knowledge in a machine-accessible format offers an advantage
over books and search engines: the data isn’t a stream of bits anymore but
the meaning behind the bits, and therefore allows to perform an automatic
semantic lookup of small pieces of knowledge even in a large compilation of

writings.

On Tau the knowledge economy is implemented via Agoras, a network aided with a
cryptocurrency. Agoras will leverage Tau’s knowledge representation and collaborative
formalization features in order to allow knowledge owners and creators to offer it for
paid usage.

The paper describes in depth these and plenty other features of Tau and Agoras.

Contents

3

[2.3 Large-Scale Decentralized Social Choice|.

2.4 Collaborative Sottware Development|

2.5 Logics tor Laws| oo

[2.5.2 Derivation of the Logic|
2.6 The Internet of Languages
[2.6.1 Tau Meta-Language|

[2.6.2 Futamura’s Projections|.

Agoras
I;i.l g:gzllllii!:l{xl
[3.2 Economics of Knowledge| 000000

[3.2.1 Production, Supply, Demand, and Pricing

[3.2.2 Knowledge-Cash Iransactions
[3.2.3 Freestyle Knowledgel

[3.3 Computational Resources Market|

[3.50 Applications|o

[3.5.1 Decentralized Search Engine|

11
12
13
14
15
16
16
18
19
20
22
23
26
30
32
33

[4 Evolution and Impact|

[4.1 More Fair Legislation and Economy|
4.2 The Critical Mass and the Tau Chain Reactionl
4.3 The Singularityl

[A° Summary of Problems, Questions, and Answers|

[B Tau and Classical Social Choice Theory|

[C_Tau vs. Nomic

[D P-DATALOG Language|

[l2_Proof of Theorem 2

43
43
44
44

48

50

53

60

64

1 Introduction

Tau-chain, or simply Tau, is a decentralized blockchain network offering innovative
social-choice methods in order to determine its own next version, and by that being
controlled solely and effectively by its many users. Tau’s users specify what they want
the system to be like, and subsequently Tau auto-updates itself according to the users’
consensus.

Software being updated and auto-updated is now a matter of every day. But who
gets to decide how the next version will be like? Usually only a development team
decides so, possibly taking into consideration the users’ inputs, but how can we have
software that is solely controlled by its many users? This is what Tau is about. Over
Tau, the developers are no one else but the users themselves, in a way that can actually
work on a large scale. Furthermore, on Tau, the software’s requirements and specifica-
tion are identified with its code. By that users don’t need to describe the “how” but
only the “what”.

Our focus is how to make this work in practice on
a large scale with many users. Achieving such a goal Figure 1.1: Taw's Workflow
turns out to involve addressing certain difficult prob-
lems, in particular the problem of very poor scalability Tau
of discussions, avoidance of logical paradoxes, and im-
possibilities that typically arise from self-amendment. Blockchain Discussion
The proposed solutions are interesting in their own
right and can be used on many other similar settings, Apply Opinion
e.g. for modern democracy, sound legislation, collab- map
orative software development, and managing a large Consensus
body of knowledge such as that which arises in aca-
demic research or large organizations. One crucial ingredient in this enterprise is the
usage of formal languages as shall be described below.

We argue that the process of users collaboratively deciding on Tau’s next code is
the same as the process of legislation. Laws have not only the aspect of just being laws
but also the process of reaching an agreement for what the laws should be, and more
importantly, how laws change with time. Tau is a process of legislation where the law

is nothing but Tau’s code. We shall therefore significantly focus on law and legislation,

and the reader may bear in mind that those processes are just another way of looking
at the Tau process defined in the next paragraph.

We now give a succinct definition of Tau to be unpacked in the course of this paper:
Consider a process, denoted by X, of [many| people, forming and following, by the way
of discussion in formal languages, another process, denoted by Y. Tau is the case where
X=Y.

To put it even more shortly: Tau, is a discussion about Tau. In particular, Tau is
a machine-aided process of understanding each other.

Agoras is a network with a cryptocurrency! to be implemented over Tau allowing

the following features:

e Self-Definition: Built over the Tau technology, Agoras is a software effectively

controlled by its many users.

¢ Knowledge Economy: Leveraging Tau’s knowledge representation and collab-
orative formalization features in order to allow knowledge owners and creators to
offer it for paid usage, as well as for knowledge seekers to efficiently locate and

purchase knowledge.

e Computational Resources Market: The ability to rent and rent-out forms
of computational resources (CPU, disk, etc) allowing large scale computations to

take place under cost and computational efficiency.

e Derivatives Market: Agoras will have a no-middleman peer-to-peer derivatives
market and by that implement risk-free interest without any creation of new coins,

using the concept of zero-delta portfolios.

It should be remarked that the design presented here subsumes an old design presented
at [II] which was found to be mistaken, as well as neglecting vital aspects related to
self-amending systems e.g. how to scale up social choice while avoiding self-amendment
paradoxes. The old design has to be completely discarded and there’s no benefit for
the reader in trying to complement the picture by revisiting it. Additionally, the com-
putational resources market is different from Zennet’s which is described in [10], for
the surrounding capabilities (mainly logic, contracts, and proofs) give rise to a more

sophisticated design.

In contrast to Tau which has no currency or any other monetary aspect.

Another remark is that this paper sometimes refers to Tau and Agoras in a present
tense, e.g. “Agoras does...”, but Tau and Agoras are still not ready as for the time of
writing these lines.

This paper is organized as follows. In the first section we discuss Tau. First,
starting from presenting the paradigm of human-machine-human communication and
the main features of the system, as well as how to scale discussions. Then we continue
with aspects of decision making. Afterwards we speak about collaborative software
development, and then we move to describe our main theoretical contribution being the
laws of laws and logics that admit them. We conclude with the internet of languages.

The second section is about Agoras, first describing contracts and then moving on
to economics of knowledge, and concluding with computational resources market and
derivatives market.

On the last section we present a taste of the long-term impact of the system.

Five appendices follow: The first is a summary of the main problems and questions
answered on this paper. The second describes a bit of classical choice theory and
compares it to our setting. The third corresponds with Suber’s view on self-amendment.
The fourth sketches the P-DATALOG langauge, and the fifth presents a proof that P-
DATALOG with evaluation operator collapses to P-DATALOG.

2 Tau-Chain

2.1 Human-Machine-Human Communication

How can a very large group of people reach a collective decision? Tau offers a new
paradigm to address this long-standing problem, a paradigm which we refer to as
Human-Machine-Human Communication that solves this problem to a very large and
generic extent. Tau is therefore useful for all kinds of collaborative theory formation
and decision making and not only regarding its own code, as we shall emphasize later
on. We can even argue that our solution is a complete resolution of the problem: x10
more participants will indeed yield at least x10 more outcome, in sharp contrast to how
discussions currently scale?. This set of solutions is rooted in two concepts which will be
explained shortly: the first is the usage of machine-comprehensible languages, and the
second is the ability to maintain small scale aspects of discussions and decision making
on a large scale. But before we touch those two points let us discuss a bit legislation
and voting.

When considering a large scale collaborative effort of legislation (or any other theory
formation), voting commonly comes to mind. Indeed legislation of state laws typically
involves forms of voting. However there is a certain major scaling limitation related to
voting: even though it’s possible to let everyone an effective and equal right to vote, it
is still impossible to let everyone an effective and equal right to propose what to vote
over, since even if everyone got an equal right to propose, how one is even going to
read millions of proposals a day? This makes the equal proposing right ineffective. We
conclude that voting cannot effectively scale and stay fair at the same time.

Furthermore, this difficulty of discussion scaling holds even if we assume that all

2Discussions scale even more poorly than other settings arising in economics. Typically economical
settings scale under the “Law of Diminishing Returns™ twice more workers typically don’t yield twice
the outcome, but less. This is commonly formalized by stating that the second derivative of the utility
function is negative, or in other words, convexity. This is one of the main reasons that convexity plays
an important role in economics, and one of the main assumptions on any economical utility function
is convexity. However discussions scale much worse: their utility (e.g. the amount of knowledge, or
agreements, becoming accessible and useful to the participants) does not merely exhibit a negative
second derivative w.r.t. the number of participants, but commonly even a negative first derivative,
since having too many participants in a discussion commonly reduces the outcome, not only not
increasing it proportionally.

Note that differentiability and convexity here are in a generalized sense: for discrete variables, taking
the differences would serve the same goals and arguments for the law of diminishing returns.

participants are polite, smart, open minded, love each other, and behave perfectly. It
should be noted that other projects that deal with helping discussions indeed tend to
deal with managing the absence of such reality, of everyone being “perfect”. However
we deal with a much more fundamental bottleneck which remains in-place even if the
“perfectness” assumption holds.

In everyday life, large scale decision making is commonly addressed by creating
hierarchies of decision makers, who in particular get to decide what people may vote
over. But then the vast amounts of knowledge and the varying preferences of the
voters are not reflected in the proposals, because, in the better case, the data fails
to propagate up the hierarchies due to information-handling bottlenecks, preventing
humans from processing large amounts of information in any form?3. Voting is therefore
carried out over alternatives almost void of truly relevant considerations.

In small groups we rarely even consider voting. People simply say what they
have to say and this by itself is enough for the participants to understand each other’s
opinion and where they agree or disagree with each other. The participants don’t
need to vote because they already know what the voting result would be, since all
the information is already presented, implicitly or explicitly, in what they say. Put it
differently, the opinion map naturally arises from things said during discussion. How
can we achieve this in the larger scale, in which we have a discussion among a large
amount of participants yet we are still able to recover the opinion map?

This is made possible with the help of machines, but it comes with a significant
cost: participants in a discussion will have to speak in a language that is understood by
machines?. When this is the case, the machine is then able to calculate the opinion map
(and the agreements/disagreements,/consensus). We refer to such languages as formal
languages, and more specifically, we consider languages which are, or translatable into,
logical formulas. More on the language aspect of Tau will be emphasized on subsections
and but we first move on to describe other elements of the system.

3Let alone other bottlenecks which may or may not be solved by imposing certain flows and behav-
iors.

4In fact not all such languages are adequate for this case, and we shall emphasize later on about
the logical aspects required in order to make this work.

10

2.2 Large-Scale Discussion Platform

Maintaining aspects of small-scale discussions in the large scale, we’d like users to
simply say their opinions without any need to organize them, yet all viewpoints and
the relations between them should be automatically inferred.

Tau takes the form of a discussion platform and a social network similar to existing
ones, with friends and posts and comments. The main difference is that users write in
formal languages and further aspects derived from that. The main components of the

system are therefore:

e Discussions: Ability to have discussions using formal languages. Discussions
include opinions, questions, and answers. Discussions may also be implicit: spho-
radic posts and comment across the network, yet about the same subject, may be

counted as such.

e Worldviews: Being user profiles and representing the totality of all the user’s

opinions expressed over the system.
e Teams: A group of users collaborating towards a common goal.

e Permissions: Allow only certain groups of people (e.g. friends) to have access

to the users” worldview or parts of it. Similarly for teams.

e Query: Users are able to run semantic queries over worldviews and discussions,
and virtually any data present on the platform. This amounts to machines an-

swering questions in a precise way.

e Agree/Disagree: Users are able to click “agree” or “disagree” on other users’
posts. This is considered as merely a shorthand as if the user posted the same
opinion (or its negation, respectively). Similarly, users may agree/disagree on

which question is interesting, see below for questions vs. answers over the system.
e Trust: Automatically agree with certain users about certain topics.

e Consensus: Calculate what all or most of the discussion’s participants agree on.

Users are able to configure much broader definitions of what “consensus” means.

11

e Opinion Map: A more detailed report of all opinions expressed in a discussion,
ordered by implication in the logical sense®. Observe that although we can expect
a discussion of four people to contain four different opinions, we do not expect a
discussion of a million people to contain a million different opinions, but many
participants will hold the same (or overlapping) opinions and/or agree with each
other.

e Contradiction Resolution: When a contradiction arises inside a worldview or
between users (whether in the same discussion or not), the system will report the

contradiction and offer ways to resolve it.

e Autocomment: Tau will be able to automatically comment on topics, optionally
with the user’s review and approval, based on previous posts from the same user

regarding that topic.%

e Synthesize: In the case of a discussion about a specification of some desired

software’, to synthesize code that meets the consensus over this specification.

In addition we have the following features which arise from the Internet of Languages,

a design allowing to define new languages and translate between them, discussed in
detail at 2.6k

e Add Language: Support a new language over the network, or a new version of an
existing language, by submitting a translator guiding how to translate documents

in that language into an already-existing language.

e Translate: Translate (compile) a document from one language defined over the

Internet of Languages, into another.

2.2.1 Worldviews and Teams

A user’s worldview is the collection of all opinions expressed by that user in the form of

posts and discussions and agreeing/disagreeing. Similarly, a worldview contains which

Se.g. “X and Y” implies both X and Y, or in other words, “X intersect Y” is a subset of both X and
Y, or, “A is a special case of B”.

6Tau will never guess your opinion, not even an educated guess. This demonstrates both the power
and the necessity of logic-based Al in contrast to machine learning which is probabilistic in nature.

"Including the specification of the system itself.

12

questions the user has marked as “interesting”®. Users can then query not only their
own worldview but also other users’ worldview, provided that they gave permissions for
other users to view their worldview or part of it. By that users can find other users with
similar ideas or common interesting questions. One can only imagine the implications
of this for recruiting, research, business partnerships, and even dating.

Teams are groups of people with a common cause or common questions to discuss
and answer. A team creator may arbitrarily choose its initial rules. One special team
would be the one that determines the next Tau code. Who will participate in this team

and how, is left for this very team to decide, as we shall describe more later on.

2.2.2 Truths vs. Opinions

It should be noted that, inevitably, Tau has no access to truths, only to opinions. One
might argue whether humans have access to truths, and we’re not going to get into this
point, we only state the obvious that machines have no access to what we intuitively
consider as physical truth?. Tau has no way to verify the correctness of statements like
“the Sun is made of hydrogen” or “the Sun is made of cheese”!?. By that, Tau can never

t11. However it can infer certain kinds of

say who is right and which opinion is correc
truths and falsehoods in the case of tautologies and contradictions. A contradictory
opinion is always false, and is a case where we can indeed point to a physical falsehood.
The equivalent holds for tautologies.

The more opinions stated about a certain topic, the higher the probability that

a contradiction will arise!2.

We can therefore approximate the truth by the way of
elaboration, and choose to accept certain opinions as truths or falsehoods by the way

of debate, challenging each side to give more statements on the subject and by that

8The nature of questions over Tau will be discussed below.
9Tn contrast to mathematical truths, which are no different than tautologies, and by that say nothing
nontrivial about the “real world” other than “a contradiction may never exist”.

0Even if we equip machines with sensors, e.g. camera and microphone, it is always possible to “fool”
it by letting it see any predetermined inputs, and it will never know whether its sensory inputs are
“real”, “fake”, or “compromised”.

UTn particular, Tau should not be seen as a tool for avoiding “fake news”, except in special cases as
we explain right away. We mention “fake news” because a question commonly arising among people
hearing about Tau and its logic and truth aspects, is whether Tau can solve this problem, and the
answer is mostly negative indeed.

12T fact, this probability increases in an exponential manner because of the multiplicative nature
of conjunction.

13

increase the probability of contradiction for each side. This can also have a monetary

aspect over Agoras.

2.2.3 Questions vs. Answers

We start with philosophical observations regarding questions vs. answers. We have
the notion of a correct answer, and we can even program computers to tell whether a
given answer to a given question, is correct. We are interested in correct answers to our
questions.

Just like answers may be correct or incorrect, at the same way questions may be
interesting or not. How can we tell which question is interesting? This is not a question
which machines can answer, as this is purely a human thing.

Questions being interesting is not only subjective, but inherently always stems from
the logically-arbitrary preferences of the asker!3. There isn’t such a thing as “an inter-
esting question”, but “a question interesting for certain beings in certain times”. Our
questions come from our human nature and our personal nature. Our personality is de-
fined by the questions we find interesting, so much more than by the answers we give.
Similarly, cooperation between people interested in the same questions makes much
more sense compared to cooperation between people agreeing on the same answers.
Many would be much more interested in finding people asking the same questions as
them than finding people giving same answers.

Questions also guide some theoretical considerations in knowledge representation,
e.g. the setting of open world assumption vs. the one of closed world assumption'?,
since a question may be seen as a query under the open world assumption, while answers
are more related to the closed world assumption. Questions are therefore a major aspect
of Tau.

For clarity (and for this subsection only) we can distinguish between “questions” and
“queries”. By “queries” we refer to questions in which we expect to have an immediate

answer to, e.g. the case where we feed a machine with information and then query that

13To get convinced about the arbitrariness and non-logicalness of our desires, one can acknowledge
that we don’t even know what we’ll want to eat for dinner. No logical formula can entail that. It has
nothing to do with the nature of truth but with the human nature.

4Open/Closed world assumptions are fundamental notions in the fields of databases and knowledge
representation.

14

information. The machine should not return any new information, it will only use the
information that we gave it'®.

In contrast, by “questions” we refer to questions in which we don’t expect to have
an available answer yet. A question is a tool to define which knowledge is desired.
Questions usually come chronologically before the knowledge, not the other way around,
and even in case they don’t, that knowledge would frequently be ignored and dismissed
as “not interesting”. Questions are a tool to scope a discussion or an exploration into
certain areas of knowledge. A tool which the machine will never be able to simulate,
but only given the human input of which questions are interesting, it can greatly help
us in finding correct answers by organizing discussions about those questions and by
performing various automatic inference tasks, in particular, locating correct answers to
interesting questions disregarding who or how many gave the answer, that, across the
whole network, up to visibility permissions set by the users. By that no good answers
and ideas will be wasted and neglected anymore.

The fact that questions do not have a “truth value” similar to answers, but “interest

716 ouides us to conclude with the role of the people vs. the role of machines

value
over Tau after becoming mature with enough formalized knowledge: humans are for
questions, and machines are for answers. More broadly, we see this as a philosophical

truth that should guide any Al aspirations.

2.2.4 Understanding Each Other

Over Tau the machine is not an equal part in the conversation: it is only a machine. It
merely organizes what we say and is able to do so since we encode our information in a
way accessible to it. A user can broadcast an idea to another user, and at this narrow
scope of communicating an idea between people we can already enjoy three benefits:
easy explaining, easy understanding, and formalizing knowledge as a byproduct. We

justify this claim heuristically by first presenting a working definition for “understand-

15This in sharp contrast to machine-learning kind of AI. Tau is about logical AI, while machine learn-
ing is about statistics under zero knowledge about the measured population, and therefore frequently
returns wrong answers even for simple questions like addition of integers. There’s much more to say
about the relatively-little expressiveness of machine learning compared to logic. From a descriptive
complexity point of view, machine learning is known to lie in the complexity class P, while common
logics very frequently subsume this class by far.

16Giving rise to ordering of questions. One correct answer is not “more correct” than other correct
answer, but one question may be more interesting than other interesting question.

15

ing”: fully understanding a point means the theoretical ability to answer all questions
relevant to that point!7.

Over Tau the explainer doesn’t need
to make other users understand (the tar- Figure 2.1: Understanding Each Other
get users), but only making the machine
understand. This task might be sim- ASK
pler on some aspects and more complex

on others, as machines are certainly less EXPLAIN

o Human Tau Human
bound to organization and scale than hu- (explainer) (understander)
mans and further can assist the formaliza-
tion process, but on the other hand ma- —
chines have a language barrier aside their
inaccessibility to the human nature. Having achieved an idea formalized in a formal
language, the target users can now not only translate it to other knowledge represen-
tation languages, or to organize it as they see fit, or to compare it to other formalized
ideas, but they can also ask the machine all questions they got. Since the machine
understood the subject completely by our definition of “understanding” above, it can
help the target users understand it as well because it can answer all the users’ questions,
without the need to refer the question to the original idea’s author. Tau is therefore a

trusted ambassador of ideas.

2.3 Large-Scale Decentralized Social Choice
2.3.1 Overview of the Self~-Amendment Process

We now sketch the flow of Tau as a self-amending platform. Users discuss over Tau,
using formal languages that admit the Laws of Laws (defined below), what should be
Tau’s next version. Tau then calculates the possible alternatives for its next version.
On 2.3.2] and 2.3.3] we will deal with which alternative from those to choose. Those
alternatives, whose aspects are discussed below, are next-block candidates for Tau’s
blockchain. Once an alternative is chosen and added to the blockchain, Tau then

downloads that next block and invokes itself under its new definition. As we shall see,

"In particular, due to Gdédel’s incompleteness, we can safely claim that no one will ever fully
understand arithmetic.

16

our logic of choice will include a self-interpreter and built-in quoting and evaluation
operators, and by that Tau need not replace its code and externally run it, but it can
simply call the evaluation operator over the quoted code inside the blockchain and
by that replay the blockchain from the genesis block to its current block, resulting,
among other desired outcomes, with a proof-carrying execution that justifies the whole
blockchain’s history up to the last block'®.

Furthermore, a special step between consensus and the next version is introdced,
call it “application”. After users have said their opinion and a consensus is reached,
the change doesn’t occur right away, but the users have to also agree to apply the
change, and if they don’t, the discussion continues and may or may not reach a different
consensus. This “agree to apply” step is used as a safeguard and as another opportunity
to review the consensus before it’s being applied. The reason is that the consensus is
always floating - it is the statements that all users agree on at a certain point in
time. If a consensus is reached, it doesn’t mean it’ll stay there for the next minute.
We therefore have to consciously accept the consensus in the form that it happens to
emerge at. Moreover, since the consensus is a nontrivial aggregate of many people’s
opinions, it might be that the users see the proposed consensus (and hence the proposed
next version) for the first time. They’ll then need to review it and to agree that the
complete picture is desirable indeed.

In addition, a consensus may not be decisive in the sense that it does not entail a
unique action for each state of the program, and by that there’s no way to execute it
as a program. Refining the consensus is therefore a vital aspect in the process.

Finally we remark that users are able to configure many more tests and conditions
in the application stage before accepting a consensus, especially as a filter against
deadlocks as discussed on the next section. We mention here one possibility: one way
to weigh a set of rules against another, in case where agreements on each are of the same
strength (e.g. 50-50), is to consider which questions that are marked as “interesting”
are being answered by each set of rules, and the one which answers more interesting

questions is favored.

18 A point which Suber’s Nomic does not support without extra-logical components as emphasized
in the subsection “Tau vs. Nomic”.

17

2.3.2 Choice Dilemmas

“Should two courses be judged equal, then the will cannot break the
deadlock, all it can do is to suspend judgment until the circumstances

change, and the right course of action is clear.”
— Jean Buridan, c¢. 1340

We explained how Tau is nothing but a software that is effectively determined by its
users. For that to happen users will have to engage in large scale discussions about what
Tau’s next code is required to do. Subsequently, the consensus will be automatically
calculated and all clients will be updated with the new specification of what Tau is
defined to be at that point of time. But which kind of consensus should be used?
Unanimity, majority, or any other?

The main technical problem with majority vote in a decentralized software network
is the inability to detect multiple votes by the same person. This can be circumvented
if we soften the requirement of decentralization by requiring to give some amount of
trust and voting power to some people. Another method would be to let users prove
their uniqueness of identity via centralized 3rd parties (“electronic notaries”).

Unanimity also raises a security risk in a decentralized setting because a participant
may, honestly or dishonestly, prevent the whole network from reaching consensus, and
putting the network in the dangerous Buridan’s Mule situation.

We have mentioned above a mechanism for contradiction-resolution, as well as de-
bates, and testing which questions that are marked as “interesting” were answered.
Those are not fully decisive methods. In what follows we therefore assume the case
where the contradiction!® was not resolved.

One rule of thumb is to not limit a user from doing anything that doesn’t affect
other users. If some group of people wants the system to behave in a certain way, and
another group wants it behave in a different way, we can then check whether it’s possible
that both groups’ preferences coexist and each gets a different view of the system. But

indeed it is not always possible to make the two changes coexist as they might contain

19 Ambiguity is referred to as a contradiction here, because the requirement of being a well-formed
program or function is in contradiction to the case where we have non-unique actions for each state of
the program.

18

some contradiction on the very foundation of the system, which may turn the system
incompatible between the groups.

One way to deal with the case of two (or more) contradicting alternatives which
cannot compatibly coexist, is to require the groups representing each alternative to
compute hashes of their proposal (mining) until the hash is small enough. This gives
preference to users with more computational (or other mining) resources, and is the
Bitcoin’s mechanism: the chain longer in terms of computational power, is the one
preferred by the network. Many similar blockchain-based algorithms are possible each
with its own advantages and disadvantages. A similar way is to simply randomly choose
between the alternatives. This is of course the solution that we wish to avoid, however
in a pure Buridan’s Mule situation, randomness is the only way out?’.

The subject we touch here is actually the laws of changing the laws, a topic of
central importance to be addressed in the next section. Many other ways of calculating
the consensus are possible, none of which is perfect. It therefore requires a discussion
among the users in which they raise possibilities and highlighting their advantages and
disadvantages, evolving into an initial community-backed set of rules. We therefore
suggest starting the discussion about Tau in a semi-centralized setting (in contrast
to a blockchain network) and by that letting the users decide the initial governance
mechanism of the decentralized network, thus temporarily circumventing the disastrous

consequences of a Buridan’s Mule situation.

2.3.3 Blockchain

As for the time of writing these lines it is important to explain what blockchains are for,
since currently the world is largely full with misconceptions for what blockchains can do
which other best-practices and cryptographic primitives cannot do. The answer is that
blockchain solves the problem of decentralized timestamping. Many forms of securing
data can be done without any blockchain but with the use of public key infrastructure,
hashes, and other cryptographic means. However the problem of securing an ordering
of events in time was shown to be unsolvable in an environment that does not assume
trust, cf. the Byzantine Generals Problem.

Satoshi Nakamoto [§] was the first to come up with an approximate solution which

20Waiting is also a possible solution as proposed by Buridan, but is not guaranteed to work.

19

is based on cryptographic assumptions. This solution is very expensive (and not only in
financial terms) and therefore is highly unrecommended for cases where decentralized
timestamp is simply not required. However, it is required at the scope of Tau.

Tau’s blockchain is a ledger of its own code. Each block contains the current Tau
code and the next block contains the next code, in a fashion similar to “auto-update”?.
The time-ordering of those codes is vital: if clients are not aligned regarding which
code version to choose, they may break down the ability to even communicate over the
network with one another, e.g. in case that the network protocol has been modifided
in a non-backward-compatible way.

One might ask: which kind of blockchain algorithm will Tau use? And the answer
is trivial: it’ll use whatever its users want it to use. If one day a better decentralized

timestamp algorithm will be invented, it can then be incorporated in the next auto-

update.

2.4 Collaborative Software Development

Tau has four main guidelines relevant for collaborative software development: correct-
by-construction software, knowledge-oriented programming, consensus-oriented pro-
gramming, and code reuse.

Correct-by-construction software is obtained by the use of declarative programming,
a paradigm where programmers define only the “what” and not the “how”. As an
example, suppose we have a body of code and we would like to add additional constraints
to it, e.g. “never send over the network data which is marked as private”. In non-
declarative programming the programmer will have to analyze the control flow of the
code and see where data is sent, and then make sure that the data is not private. This,
of course, opens the door to a lot of human mistakes?®?.

But what if we could just append a clause to the program expressing the above
constraint? In case where that constraint is well-defined, it should be possible for
a machine that gets to understand it to track the program’s flow and prevent sending
private data. For this we’ll need the mathematical possibiliy of reasoning over programs,

hence decidability of the language over such tasks is required.

21 This is the process of “changing the law”, as we mentioned above, and will emphasize more below.
22The amount of human mistakes and bugs during software development, is so huge, that arguably
non-programmers highly underestimate them.

20

We therefore observe that declarative programming largely removes the need of
taking care of the program’s control flow, and we can focus on the program’s specification
rather implementation. The field of taking a program’s specification and converting it
into an implementation is called Software Synthesis*®*. Programmers therefore need to
care only about the specification, and the rest can and should be automatic.

This specification, or in other words: the software’s requirements, is mostly not
defined by the programmer, but by the programmer’s client. The clients need to say
which software they want, and programmers code them. Once, by declarative program-
ming, we identify the requirements with the code, the borders between programmers
and users (or entities that order programming work from programmers), are blurred.
However, a specification has to be complete in the sense that the machine can always
deduce the unique action to perform next. To go back to our example, we will need a
complete specification of what “private data” and “send over the network” means.

This brings us to knowledge-oriented programming. Over Tau a large amount of
knowledge will be formalized, either directly for the sake of having a body of formal-
izing knowledge, or as a byproduct of discussions. Once enough formalized knowledge
becomes available, even non-programmers will be able to say “I’d like this software to
be secure, by this and that definition of security which I adapted from an expert that I
trust”, and a software will simply become secure by the mere utterance of this sentence.

We now move to the collaborative aspect which is consensus-oriented programming.
This is quite straight forward given everything we explained so far: people will only
need to state what they want the software to do, and their consensus is the agreed
specification. This helps not only to agree with each other but also for different people
to take responsibility of different (or even same) aspects of the software without stepping
on each other’s toes, a painful and expensive difficulty in real life software development.

Code reuse is also a very useful concept. Virtually all common algorithms were
already implemented many many times. This is because using existing code comes

with a lot of difficulties, so very frequently it’s simply easier and cheaper to rewrite

Bef. page Also observe that given a full specification, one can execute the program by querying
at each step for what should be the next step, and by that execute it without the need for any
conversion into code. This approach may work very slowly in practice, to an impractical extent.
Synthesis is therefore about a certain kind of optimization. That said, there may be more aspects for
such optimizations that may not involve code synthesis methods.

21

the code®®. But since we reduce the coding task into that of knowledge representation,
knowledge may then be very easily reused. No one will have to define the same thing
twice anymore, and no integration efforts will be required anymore.

In addition, and this is relevant not only to code but also to knowledge formalization
in general, we obtain a characteristic which is so good to the extent that it is an
economical anomaly: the law of diminishing returns becomes the law of increasing
returns, because writing new code or formalizing new knowledge becomes easier as

more code and knoweldge already exist in the system.

2.5 Logics for Laws

“Before the law sits a gatekeeper.”
— Franz Kafka, “Before the Law”, 1915

We live in a world in which no one knows the law. Except trivial cases, you cannot
know what is legal and what is not, all you can do is try and see what is the judge’s
or policeman’s opinion after you’ve taken your actions, an opinion which of course
differs from one case to another. Or you can consult a lawyer that will tell you that
there are no absolute answers, and at the end of the day it’s a matter of probability
which unfortunately no one knows how to calculate. You can do your best to have a
productive life and follow the rules as you understand them or as lawyers guide you, but
no one can guarantee that you will not be considered a criminal, or that legal actions
will not be taken against you. Similarly one can live a life of harming so many people
and no legal system will stop it even if the system is aware of the actions taken. Such
pessimistic situation is not new and is not local, and to my taste was best described by
Franz Kafka.

Playing with words and taking them into any desired direction, consciously or not,
with good or bad intentions, was always there since humanity acquired language skills.
The worst lies contain only truths, and the worst crimes are licensed, and arguments
can be given to justify almost anything. This “crisis of truth” is the foundation of

the post-modern stream in philosophy, notably the Deconstructivist approach which

24Yet another peculiar fact in software development which non-programmers might not fully appre-
ciate. Indeed rewrite is most commonly cheaper than maintaining existing code, if written by different
people, or even by the same person after some time, a time which is usually surprisingly short.

22

demonstrates how texts may be interpreted in many contradicting ways. "There is no
one truth" is the basis of post-modernism. But can we at least have some island of
truth in which social contracts can be useful and make sense?

In what follows we derive a logical setting for laws and legislation and thus propose
a sound way of implementing laws and legislation. Recall that this applies not only to

laws in general but also to Tau’s own code.

2.5.1 The Laws of Laws

For our purposes we define a law to be a function that takes a description of a situation
and returns either “legal”, “illegal”, or “undefined”?®. This might be surprising: how can
something nontrivial be said about laws in such a generality that does not assume any-
thing further about the nature or purpose or scope of those laws? We derive nontrivial
statements indeed by considering the effectiveness of the representation of law, and the
case of changing the law.

Moreover, we say absolutly nothing about the law itself, but only ask which language
can be considred as adequate for serving as a language for law, or more accurately, since
the language specifics don’t matter, we seek for a logic that may soundly represent laws.
We present three requirements from a logic for law (the “three laws of laws”) which will
lead us to a certain logical formalism.

We seek for a class of expressions £ that is suitable for representing laws, and we
now list some requirements from £¢. The first two requirements are very natural but

pose a significant restriction on the required language:

e Decidability: It shouldn’t take infinite time in order to answer whether some-

thing is legal or not. We require to always have the ability to get answers, and

25The necessity of the “undefined” value will be clear below. “Undefined” does not mean “unspecified”.
It is more like a machine that never halts and therefore has no return value at all, and all machines
that may call it will also never halt therefore also take the status of “undefined”. Another way to look
at it: division by zero is not “unknown”; but is truly undefined. Any formula that contains division by
zero, is not true or false, but is simply undefined.

26We shall begin with treating £ as a set of Turing machines, a view which is justified by the
decidability requirement below, however, equivalently, £ may also be considered as a programming
language (and the set of Turing machines it represents is the set of all programs on that language), or,
as a decidable (hence computable) logic. Our goal is to find a logical language that will capture this
set of machines.

23

in particular, within finite time. This leads us to consider £ as a set of Turing

machines.

e Closure under Boolean Operations: The language should be closed under
if-then-else with equality-to-zero conditionals, so if f, g, h are programs in £, then
so is “if f(x) =0 then g (z) else h (z)”. In other words, £ should be closed under

union, intersection, and complementation?”’.

The next requirement arises when considering the case of changing the law. Suppose
we have a law and now we’d like to allow modifying it over time. For that we better
come up with laws of changing the laws, as otherwise, the law may be changed under
no condition whatsoever, rendering it meaningless and useless, since in order to break
the law one only needs to first change it, and in the absence of laws of changing the
laws nothing would prevent one from doing so.

We therefore need not only laws but laws of changing the laws. But then we’ll also
need laws of changing the laws of changing the laws, as otherwise one may change the
laws of changing the laws, and by that be able to change the law, again rendering the
law useless and meaningless.

Is it therefore the case that we must have infinitely many laws (laws of changing the
laws of changing the laws of changing... ad infinitum), and if not, a dictator lawmaker
which can change the law into anything any time, just to begin with the simplest law?
As we shall see right away, there’s a way out of this conundrum.

Consider the following law: “all laws, including this one, can be changed given
majority vote”. Is it a law, or law of changing the law, or law of changing the law
of changing the law? Well, it is all at once, because it refers to itself. It refers to
how this law itself may be changed, and by that it’s a law of changing the law ad
infinitum indeed. It is important to note that this law makes perfect sense and raises
no paradoxes, a concern that commonly arises in self-referential statements®®, cf. also

Appendix [C]

27 Another way to state it: the language of law should allow the use of the logical connectives “and”,
“or”, and “not”.

Z8Gelf-referential definitions have an unjustified negative reputation. If we open a dictionary and see
a definition of some word where the definition contains and relies on the very same word, one might
commonly dismiss this definition as either contradictory or meaningless. However we know from the
theory of computability and mathematical logic that sometimes recursive definitions don’t only make

sense, but are sometimes essential. Consider for example the definition of the factorial function.

24

We were able to obtain laws of changing the laws ad infinitum in a single finite
sentence only because we used self-reference, or in other words, recursion. We have just
demonstrated that if the law doesn’t refer to itself then we’ll never be able to soundly
protect the law from undesired change since we’ll need infinitely many laws indeed, as
above.

In fact we require from the logic of law more than just recursion: we actually re-
quire self-interpretation®”. A language supporting self-interpretation must also support

30 Self-interpretation is required because the current law must

unrestricted recursion
be able to interpret a proposed law in order to have access to its semantics, and then
decide whether this proposed law is accepted or rejected.

This leads us to formalize the third requirement from the laws of laws:

e Self-Interpretation: £ should contain a self-interpreter, which in particular

implies that £ is closed under recursion and self-reference in an unrestricted way
31

Formally:

Definition 1. A set of programs £ taking as input values from an arbitrary set X is

said to be closed under self-interpretation if there exist:

1. A quoting function @) : £ — X that takes a each program in L to its source code,
or any source code that represents that program. () does not necessarily belong
to L.

2. An evaluation function eval € £ such that for all programs p € £ and all inputs
i € X, we have eval (Q (p),i) = p (7). On all other cases, namely eval (z,y) where
x is not of the form =z = @ (p) (i.e. z is not a quoted program), we require

eval (z,y) = 0. Formally:

Vp € LVi € X.eval (Q (p) i) = p (i)] \

29Gelf-interpretation is at the same fashion as Universal Turing Machines, while those of course don’t
satisfy the decidability requirement. cf. e.g. the Halting problem and Rice’s theorem.

30Namely there’s no restriction for the forms that the recursion may take, or in other words, can
recurse any machine in £. Note that unrestricted recursion is implied from self-interpretation since
any self-interpreter may be used in order to simulate recursion, as we shall demonstrate below.

31Tt also implies non-monotonicity, cf. footnote in Appendix |C| regarding Datalog +EVAL.

25

[(=3p.x = Q (p)) — (eval (z,y) = 0)]

2.5.2 Derivation of the Logic

We first show how nontrivial the self-interpretation requirement is. The following the-
orem and proof are slightly modified versions of those in [4], Bl [7] and demonstrate the

well-known result stating that no total language may self interpret:

Theorem 1. Let L be any set of programs that is closed under self-interpretation and
under Boolean operations. Then L is not total, namely it is not defined on all its possible
wmputs, or in other words, L contains machines that do not halt on some elements of
X.

Proof. Given the assumptions we construct a nonhalting program in £. By assumption

we can write eval as

eval (x,1) :=if z = Q(p) then p(i) else 0 (2.1)

Counsider the function

evil () :=if eval (x,2) = 0 then 1 else 0

By the closure assumption and by the assumption that eval € L, clearly evil € L.

By definition,
evil (@ (evil)) = if eval (Q (evil) , @ (evil)) = 0 then 1 else 0 (2.2)
but by (2.1) we have:
eval (Q (evil), @ (evil)) = evil (@ (evil))
therefore (2.2) reduces into
evil (@ (evil)) = if evil (@ (evil)) = 0 then 1 else 0

which is a contradiction unless evil (Q (evil)) never halts®?. O

32Equivalently, its output is undefined.

26

Corollary 1. All logics having the satisfaction relation |= defined over all formulas and

all structures, do not admit a self-interpreter.
This rules out virtually almost all common logics, including FO, SO, and HO33,

Corollary 2. FEzxactly one of the following two alternatives may take place: either the

law is unprotected against undesired law change, or, not everything is judgeable.

Proof. We have pointed out that without self-interpretation the law cannot interpret a
newly proposed law and by that cannot protect itself under undesired law change. If the
language of law doesn’t support self-interpretation, then in particular any specific law
cannot support it. But if we support self-interpretation, we can construct a nonhalting
machine as in Theorem 1, which means that there are situations in which no legal /illegal

value may be assigned. O

To demonstrate the “undefined” situation in a legal setting we recall the ancient
Greek paradox of Protagoras, also called “the Paradox of the Court”. Quoting the
paradox from Wikipedia:

“It is said that the famous sophist Protagoras took on a promising pupil,
Euathlus, on the understanding that the student pay Protagoras for his
instruction after he wins his first court case. After instruction, Euathlus
decided to not enter the profession of law, but to enter politics instead, and
Protagoras decided to sue Euathlus for the amount owed.

Protagoras argued that if he won the case, he would be paid his money.
If Euathlus won the case, Protagoras would still be paid according to the
original contract, because Euathlus would have won his first case. Euathlus,
however, claimed that if he won, then by the court’s decision he would
not have to pay Protagoras. If, on the other hand, Protagoras won, then
Euathlus would still not have won a case and would therefore not be obliged
to pay. The question is then, which of the two men is in the right?”

Indeed we observe a situation which is undefined and can be modeled as an infinite
loop: if Protagoras won then Euathlus lost, but then Protagoras lost so Euathlus won,

and so on ad infinitum.

33From here and to the rest of the paper our terminology is of Finite Model Theory, cf. [1]. A good
starting point would be the Wikipedia article named Descriptive Complexity.

27

Corollary 3. If a class of machines L satisfies the requirements from law, then it must
contain non-halting machines and also must possess a decidable halting problem for all

1ts machines.

This demonstrates the difficulty in finding a class £ which is both decidable and
has a self-interpreter, as well as the dissonance between halting machines and machines
with decidable halting problem.

A function that is defined on all its inputs (namely has no “undefined” value) is
called total. Clearly, plain first and higher order logic over finite structures, are total.
We are not aware of enhancements to classical or intuitionistic logic that support the
undefined value, except three cases: undecidable classes, the deterministic transitive
closure operator®!, or, partial fixed-point logics which is the case discussed below.

Time-bounded machines are therefore ruled out because they never loop forever.
The situation with space-bounded machines is different. A machine may loop indefi-
nitely even under constant space (memory), still such classes do have a decidable halting
problem. More precisely, a class of Turing machines which never takes more than f (n)
bits of memory, where n is the length of the input and f : N — N is any computable
function, has a decidable halting problem, and whether it halts or not can be decided in
no more than 27 steps. This gives rise to the well-known (and almost trivial) result
that

SPACE (O(f (n))) € TIME (0 (2/™))

although time and space complexity classes are of asymptotic nature and refer to
problems rather machines, while our argument refers for all inputs not only asymptot-
ically, and refers to machines rather problems. We are therefore hinted and guided to
look into space complexity classes.

The decision procedure for the halting problem for space-bounded machine is as

34We will not discuss this operator here but it goes along the same lines as PFP for the matter of
capturing space-bounded computation, PFP for PSPACE and det-TC for LOGSPACE.

35Space complexity classes enjoy several highly desirable features: they are closed under comple-
mentation (Immerman—Szelepcsényi theorem), and are also equal to their nodeterministic counterpart
by Savitch’s theorem, which suggests that they are also closed under inverse image. Both theorems
are in case the class is expressive enough, and both hold for PSPACE and above. PSPACE, which is
a space complexity class to be discussed below, is also closed under if-then-else and Kleene star, and
we also know that PSPACE=IP by Shamir’s theorem. In addition, space complexity classes (above
some level) correspond to alternating time complexity classes which logically corresponds to quantifier
alternation.

28

follows: since the machine’s configuration at each point of time can be described with
at most f (n) bits, there cannot be more than 2/ configurations. The machine then
loops indefinitely if and only if it visits the same configuration twice, a situation that
can be detected in no more than 2/ steps.

Before we continue, we demonstrate how recursion can be simulated using a self-
interpreter. We show how to implement the factorial function g (n) = n! using the above

FE and @ functions (E is above’s eval). We do so by defining an auxiliary function h:
h(z,y) :=if y =0 then 1 else y x E (z,y — 1)

and then:

for example:
g(1)=h(Q(h),1)=if 1 =0 then 1 else 1 x E(Q (h),0,0)

and
E(Q(h),0,0)=h(0,0)=1

Observe that g, h are not recursive nor mutually-recursive.

We now proceed constructively. Consider a language with the primitives if-then-else
and @), E being the quoting and eval operators. In order for this class to have a decidable
halting problem, we’d like the number of configurations it may take to be finite®0. A
logical characterization of the non-visiting-twice condition is precisely the PFP (partial
fixed point) operator originally introduced by Abiteboul and Vianu and is well-known
in the field of Finite Model Theory. Indeed, over oredered structures, it corresponds to
a space complexity class: FO[PFP|=PSPACE [I], 2]. Denote by FO|PFP|+EVAL the
class FO|PFP| enhanced with the quoting and evaluation operators @, E above. We
shall prove the following theorem in Appendix [E}

Theorem 2. For any FO[PFP[+EVAL formula there exists an equivalent FO[PFP]

formula.

This result can intuitively be seen as follows: since the set of all possible k-ary

36This doesn’t mean that this is the only class with a decidable halting problem.

29

relations over a finite universe, is finite, we can therefore use the PFP halting condition
with or without the quoting and evaluation predicates. The program may still take

only finitely many configurations, all still in polynomial space. As a corollary we have:

Corollary 4. The [equivalent] languages P-DATALOG, FO[PFP| and FO[PFP|+EVAL

satisfy the laws of laws.

The equivalence of FO[PFP] with P-DATALOG is derived in [1], and a sketch of
P-DATALOG appears in Appendix [D]

Furthermore, it is easy to see that HO![PFP|+EVAL also satisfy the laws of laws.
However this is not the case for HO[PFP|+EVAL. The reason is that one may edit the
quoted program and raise its order and then cause it to consume exponentially larger
space (in case of raising the maximum order by one) and by that we lose the PFP
halting condition®’.

More about the paradox of self amendment discussed in [6] cf. Appendix |C].

2.6 The Internet of Languages

After establishing the logics that support laws, we have to come down to a concrete
language. However we reject the concept of “universal language” and postulate that
no single language is adequate for all purposes. We acknowledge that many languages
should not only coexist and be mutually interchangeable, but they should also have the
ability to evolve with time. We therefore come up with a meta-language that is capable
of defining new languages, but then, one might claim that we solved nothing, and even
though we reject the idea of universal language, we still came up with a universal meta-
language. To this end we require the meta-language to be able to self-interpret and by
that redefine itself and change with time. We therefore achieve a situation in which the
choice of language doesn’t matter while even the meta-language is not fixed.

The internet of languages is therefore a set of translators. It is important to note
that we do not at all consider translations or even processing of natural languages, and

our scope is restricted to formal languages®. Once a translator®® from language X to

37So one might argue that HO[PFP|+EVAL doesn’t even meaningfully exist.

38Gurely it might be the case that one day we’ll figure out how to support natural language to the
desired nontrivial extent that Tau requires, but we don’t count on such an event.

39All translations we refer to are assumed to be semantic-preserving translators.

30

language Y is written and submitted into the internet of languages, and similarly a
translator from language Y to language Z, we then get a translator from X to Z “for
free”. This gives rise to calling it an “internet” of languages.

Formally:

Definition 2. Let L C P ({0,1}") be a set of sets of bitstrings where P denotes
the powerset and the star is Kleene’s. Denote by £ a labeling function £ : L —
X where X C {0,1}" is a set of labels and L is bijective. Assume we are given
an equivalence relation ~; for each ¢ € X under the provision that two bitstrings
are considered “equivalent” if they’re semantically equivalent, and the specifics of this
semantic equivalence is abstracted by ~,. Call the elements of L the “languages”. An

internet of languages is a function
F:XxXx{0,1}" = {L}u{0,1}"

taking as arguments two labels of languages called the source and target languages,
and a bitstring called the input document, and returns either L or a document in the
target language such that for all {¢;,0;} C X and x € {0,1}" it satisfies

V{gl,gg} C XVzx e {O, 1}* .

v g L7 (0)\/
F(ty,l,2)=1\/
[F <£1>€2>x) e y} < [F (8278179) ~ :C]

Furthermore, we require that /' € L when F is seen as a subset of {0,1}" x {0,1}" x
{0,1}" x {L}U{0,1}", namely as a set of bitstrings each being a concatenation of four

bitstrings (this is the self-interpretation requirement).

Loosely speaking, F' has its transpose being its inverse. Observe that F' defines
a “global” equivalence relation ~ over Uze ¢ (we use a topological notation here for
“explicit” disjoint union, namely tagging each bitstring with the language it belongs to)

which defines semantic equivalence over bitstrings from different languages.

31

2.6.1 Tau Meta-Language

In order to define a new language one defines how it translates to an existing language.
Writing such a translator is done using TML, the Tau Meta-Language, an implemen-
tation of FO[PFP] (or more precisely of what [1] refers to as P-DATALOG)* which
therefore admits the above requirement of self-interpretation. Another important re-
quirement is the ability to go back and forth, namely given a translator from language
X to language Y we wish to have a translator from Y to X “for free”. This is not math-
ematically possible in Turing complete languages, but TML is capable of supporting
that!.

By TML being an implementation of FO[PFP] it fulfills the requirements from the
languages of law in addition to the requirements from the meta-language. However TML
is intended to be a meta-language indeed and does not come with KR&R (knowledge
representation and reasoning) features. It is intended to be a tool for implementing
KR&R languages. In other words, TML is a compiler-compiler intended for logic,
knowledge, and other formal languages. But since TML fulfills the laws of laws we can
then write a translator from some KR&R language into TML and then run the resulted
TML code. The usage of TML in the system is therefore two-fold.

TML’s translation workflow is as follows. Given an input document D in some
language X, we wish to translate it a semantics-preserving translation into a document

D' in the target language Y. A TML program consists of a grammar??

and logical
rules. Denote our translator from language X to language Y by P, where P is a TML
program implementing this translation*®. TML’s backend will then run D through the
grammar supplied in P and construct a parse forest. The logical rules in P will then
edit this parse forest by adding and deleting nodes, eventually obtaining a tree in which
its yield is D’ in language Y.

We remark that this internet of languages may be used for other text conversion

tasks beyond translation between KR&R languages, as well as building correct-by-

40To possibly be enhanced to HO![PFP|+EVAL.

41Tt is possible to use nondeterministic Turing machines in order to compute the inverse image for
any machine, given it is guaranteed that the inverse exists. But on our case, NPSPACE=PSPACE by
Savitch’s theorem.

“2For now TML supports context-free grammar extended with some non-context-free features,
though ultimately it can support all context sensitive languages because they’re both PSPACE-
Complete.

43The specifics of the translation are of course up to the TML programmer.

32

construction compilers. As an example, for the sake of convenience and organization
one can write a translator that creates a Wiki based on a body of formalized knowledge.
In its full generality, TML is a generic compiler-compiler®?.

Further we remark regarding the existence and possibility of use of so-called Con-
trolled Languages*®. This concept is at the fashion of “simple enough English that
machines can understand”. Sentences written in such languages are valid (or almost
valid) natural language sentences, but are forced to take a certain shape e.g. subject-
verb-object. Those languages won’t cover nearly all of valid natural language sentences,
but they still might be more approachable than languages which don’t take any form

that resembles natural language.

2.6.2 Futamura’s Projections

In a seminal paper, Futamural5] has shown how to use a partial evaluator in order to
automatically generate a compiler out of a given interpreter, as well as to automatically
obtain a program that generates a compiler out of any interpreter. Those would be two
out of four Futamura’s projections. Such an ability is of course very appealing at the
scope of the internet of languages. It is therefore planned to create a partial evaluator
for TML and by that enhance the internet of languages with such important abilities.
A partial evaluator may be used in more cases, especially for optimization purposes.
In fact Futamura’s projections and partial evaluation themselves essentially mainly
offer optimization. Indeed given a source code of length M and a partial input of
length N, the naively (i.e. under mere substitution without any optimization) partially
evaluated program has maximal size of M N, therefore computable even in quadratic
space, since (M + N)2 > MN. Further optimizations of the partially evaluated code

can be anything else up to TML’s expressive power.

44Up to tasks which are out of its complexity class, e.g. certain optimizations and typechecks
45¢cf. e.g. Attempto Controlled English (ACE).

33

3 Agoras

3.1 Contracts

Contracts in a blockchain network, also referred to as “smart contracts”®, have been
a subject of interest. Allowing predefined actions to be taken on the blockchain as a
function of events occurring on the blockchain as well, is not very different than the
case of the language of law. Inability to reason over Turing-complete “smart” contracts
has proven itself time and again to cause major financial losses to innocent parties. Not
only decidability is required but also self-interpretation, surprisingly or not. To quote

from [6] section 20:

“Self-amendment appears in many contexts other than constitutional amend-
ing clauses. If a written contract stipulates that only written modifications
will be effective, may that provision be modified orally? It is reflexive either
way: if it is orally modifiable, then self-excepting, and if not, then self-
applicable. Can a contract’s no-waiver clause be waived? Why can a will’s
no-revocation clause be revoked? Why can a will’s nocontest (in terrorem)
clause be contested?”

We therefore observe how contracts share logical properties with laws, in particular
when it comes to self-reference and amendment, which is not a surprising result. As we
saw, coming up with an adequate logic is not an easy task and we presented here such
a logic for the first time. In Agoras we therefore consider contracts formalized in logical
formulas which admit the laws of laws. Special cases of such contracts are considered
below: trading knowledge, renting computational resources, derivatives over financial
assets, and more.

In addition, such contracts must be able to be settled and enforced on the blockchain,
namely the network has to have the ability to verify the conditions for coin transfers.

Contracts in a decidable language are of interest by their own. It allows to ask all
relevant questions about the contract, in particular its outcomes in certain scenarios,

and to have a guarantee that whatever formalized negative result may never take place.

46 Although currently contracts over blockchains which are referred to as “smart contracts” do not
have any justification for bearing this name.

34

3.2 Economics of Knowledge

In our current world one can rarely monetize knowledge in a direct manner. We almost
never buy or sell (or price) a single piece of knowledge. Seeking knowledge in an
economical setting is currently mostly done by appealing to people who we assume to
be involved in a field where the knowledge of interest may exist, just like there isn’t a
book for each single answer, but we look up answers in books that deal with apparently
relevant fields. Knowledge is a major part of our economy, and here we seek for cases
in which we can make the economics of knowledge more efficient and more advanced.

Formalizing knowledge in a machine-accessible format offers an advantage over
books and search engines: the data isn’t a stream of bits anymore but the meaning
behind the bits, and therefore allows to perform an automatic semantic lookup of small
pieces of knowledge even in a large compilation of writings.

We mentioned how a shared knowledge base will evolve over Tau and its logic-
based discussions. In a framework where knowledge is constantly formalized and shared
between users, it’s only natural to consider an economical infrastructure to facilitate
all aspects of the economics of formal knowledge. This is the topic of the current

subsection.

3.2.1 Production, Supply, Demand, and Pricing

Let us first consider how knowledge is generated, or “mined”. If we treat knowledge as
something beyond [natural or artificial] sensory inputs, one can argue that the act of
reasoning is the one that generates new knowledge from existing one. Such a process
can also be done automatically. But how can we guide this automatic search process
such that it’ll produce interesting results?

In subsection we spoke about the concept of “interesting questions”. A piece
of knowledge is valuable if it’s interesting, and its value should depend both on the
level of interest and on the hardness of answering the question. Observe that being
interesting is relevant mainly for the asker (the “buyer”) while hardness of answering
is relevant mainly on the answerer (the “seller”). Questions and answers therefore
[partially| correspond to demand and supply in the economics of knowledge.

Unlike the concept of being interesting which is purely a human thing, hardness of

answering is something slightly more accessible to machines, since they can measure

35

steps and resources, and besides there is a rich theory about complexities of various

reasoning tasks. This gives rise to more accurate pricing.

3.2.2 Knowledge-Cash Transactions

In a broad sense, users interested in certain questions may offer a reward for an answer.
Verification of answers may be done in several ways. In some cases, like certain common
mathematical questions, the answerer may supply a proof for the answer and no dispute
arises over whether or not the answer is correct. We might even have information
about whether such a verification process is expected to be efficient*”, again by using
considerations from complexity theory?®. There’s more to add to this point from a
cryptographic point of view (e.g. zero-knowledge proofs and homomorphic encryption),
but this is out of the scope of the current paper.

But sometimes asking for a mathematical proof is too much and not only in cases
where it is computationally expensive. Sometimes one might trust an expert in the
traditional way, simply by impression or recommendation or advertisement etc. as
common, and then automatically trust their answers. A simple example would be to

149

trust a medical doctor which you already know well*| and not require them to supply

a mathematical proof for each and every medical advice they give, as this will render
the whole thing impractical®.

We proceed with additional use cases for knowledge economics over Agoras. Con-
sider some reputable body, like a university or a trusted expert, which takes the hard
task of formalizing some large and useful body of knowledge. They can then offer a
subscription to users for automatic participation in their discussions. As explained
above, Tau will allow “autocomment” so it can automatically participate in a discussion
on your behalf based on your Worldview. That subscription lets subscribers enjoy au-

tomatic participation in discussions where the data comes from a trusted source (from

4"Namely we want the computational complexity of verifying the proof to be significantly lower than
of finding the proof. This is captured, for example, by the complexity class NP, and in a different
fashion by the complexity class IP, which happens to equal to PSPACE by Shamir’s theorem.

48Even more refined measures of complexity are given under the concept of “Fixed-Parameter
Tractable” (FPT).

490r, trusted by an entity which you also trust, to the extent of “if this entity says that this user is
a real and good doctor, then I take their word for it”.

S0However when Tau accumulates enough knowledge we can certainly expect an automated well-
justified medical advice.

36

the single user’s perspective). For a specific instance, a law firm offers their knowledge-
base to automatically participate in corporate discussions and possibly autocomment
on certain ideas to be legal or illegal.
Another form of subscription may be pay-per-query, allowing subscribers to ask
questions and get answers, with or without revealing the whole knowledgebase.
Furthermore, thanks to Tau’s collaborative knowledge formation aspects, a group

may formalize knowledge and monetize it together.

3.2.3 Freestyle Knowledge

That all emphasized, clearly a human touch is crucial for many forms of knowledge
transfer, and not all knowledge may or is suitable to be formalized under all circum-
stances. Seeking quick advice from a doctor by means of exchanging formalized knowl-
edge is not always the preferred way to go, same for taking a private tutor, and so many
more examples. We therefore intend to also have a freestyle form of trading knowledge,
in the form of text, audio, and video, based on the micropayments protocol described
in [9], in a fashion similar to [14]. This final touch gives Agoras everything it needs in

order to be a fully functional knowledge economy.

3.3 Computational Resources Market

Agoras will fascilitate a market for renting and renting-out computational resources.
They can be used, aside the generic use case of computation, to perform reasoning tasks
that occur during the normal operation of the system. We will not cover this subject
now but we did so to a large extent on Zennet’s materials, cf. e.g. [10]. Zennet’s pricing
formula appears on [I3] which eliminates the risk of mispricing®!.

In contrast to Zennet’s design, renting computational resources is done by a contract
in the fashion of section 3.1}

We will however mention one point which we shall use later on: mitigating the risk of
wrong computation (intentionally or not). We already spoke in subsection about
efficient proofs, and in such cases, they may as well be utilized here. In other cases,
one way to probabilistically verify unverifiable computations is to calculate the same

thing more than once (by randomly choosing more hardware providers), so increasing

51 Non-precise pricing of computational resources is a security risk, because it can then be exploited.

37

the cost linearly, decreases the risk exponentially (e.g. x10 more cost decreases the risk

to the power of 10).

3.4 Derivatives and Risk-Free Interest

Agoras will offer an innovative derivative market (as in put-call options), featuring the
ability to receive risk free interest for deposits without the issuance of any new coins,
or in other words, without inflation.

Before we get into details we remark that the proposed derivatives market is com-
pletely peer-to-peer with no man-in-the-middle whatsoever. More generally, there is no
central entity or a toll-taker across the whole design of Tau and Agoras.

The underlying assets in this derivatives market are of a very generic nature: they
can be virtually any [semi-|martingale, or more specifically, the price of goods over the
network such that its transactions can be settled on the blockchain (e.g. knowledge or
answers to hard computational tasks, or virtual assets encoded over the chain), or even
exogenous to the network by introduction of so-called “oracles”. This, as long as the
pricing function and the contract are both in logic that satisfy the laws of laws, as we
emphasized above.

A common question arising with options trading is how to price the them. For that
there’s a standard, Nobel-winning formula, called the Black and Scholes model. In
real life, the actual premium prices that people pay or charge for entering a contract
typically varies from the exact theoretical (Black&Scholes) price, depending on how the
market participants foresee the future.

The Black and Scholes model offers important information beyond only pricing an
option. It can also measure the sensitivity of the option’s price to changes in the value
of the underlying asset (the Delta), and several more important indicators, called the
“Greeks”. Taking it a step forward, Black and Scholes showed that certain combination
of options can yield a risk-free interest. It is risk-free because the sum of the deltas
of the options, is zero, cf. Zero-Delta Portfolio. It also yields an interest due to the
time value of money being taken into account in the price of the option: an option with
expiration date in two months should be priced higher than an option expiring in one,
because the uncertainty is typically larger, and because of the higher opportunity cost

incurred by having to lock a collateral.

38

The use of derivatives markets is typically two-fold: hedging and speculation. Com-
mon derivatives markets in the world are leveraged, and leverage is just a laundered
term for taking a loan, allowing very risky speculations, and was widely criticized (at
the scope of derivatives) as endangering the world economy. Therefore Agoras’ deriva-
tives market will not support any kind of native leverage. The more genuine need for
options, which is why they were invented in the first place, is hedging. Suppose we have
a client of a European company exporting to the China, such that it gets EUR and so
the Chinese client holding CNY has to convert CNY to EUR. If the EUR/CNY ratio
goes up, the client may suffer loses.

To avoid that, the client can hedge by buying options in a derivatives market. The
client will pay a premium but will reduce the risk implied by currency fluctuations. A
counterpart for that option may be a client of a company getting paid in CNY but
the client is holding EUR. To give a cryptocurrency-related hedging example, suppose
someone buys a lot of Bitcoin mining hardware and pays for that in CNY. The revenue
from mining in terms of bitcoins is more or less known, but if BTC/CNY price goes
down, the mining operation might incur losses. Therefore they might want to buy an
“put” option, namely an option to sell BTC at a fixed price on a fixed date, and by that
reduce (or even eliminate) the risk of curency rate fluctuation.

Getting back to Agoras’ risk-free interest without inflation, the answer to the ques-
tion “so where does the interest money come from if not newly printed?” would be that
it comes from the hedging needs of the players in the economy. Note that this is not an
arbitrage and indeed Black&Scholes assume that the market has no arbitrage opportu-
nities®?. The income from a zero-delta portfolio will reflect the time value of money, or

in other words, the reward for locking a collateral, in addition to the opportunity cost.

3.5 Applications
3.5.1 Decentralized Search Engine

To make the ideas even more concrete let’s consider a decentralized search engine,
which was one of Agoras’ original goals that was later generalized into the concept of
knowledge economy. Google has at lease one million physical servers which need to

crawl, index, and search the internet. So to compete with Google’s search engine one

52Namely the “Efficient Market Hypothesis”.

39

would expect to require at least the same order of magnitude of physical hardware. This
magnitude is not so big comparing to the computational resources held by households:
once city may have several times of Google’s resources®. But in a decentralized network
featuring a decentralized search engine, who is going to pay for all that computation?

The task of maintaining a web search engine depends on data which is completely
unknown until someone goes to the internet and discovers it. Therefore such a task
cannot be completely trustless, as one cannot prove that they downloaded and indexed
into the search engine the correct data, and didn’t modify or omit it. But although
this problem isn’t completely solvable without elements of trust, it is still solvable to
some probabilistic extent with risks that can be lowered arbitrarily, theoretically, as
explained in [3.3

So having a decentralized search engine requires the ability to fairly rent and rent
out computational resources, under acceptable risk as a function of cost. Continuing
further, given a hardware renting market, what would be the next steps towards a
decentralized search engine?

A web search engine consists of users and maintainers. The users supply search
queries and the maintainers answer the queries, and to do so quickly they must have the
whole web already indexed. Naturally, users have to pay to maintainers a payment that
depends on the amount of usage and the cost of maintenance. But in a decentralized
network the users and the maintainers are really the same entity.

To maintain the network all one has to do is to run the client and by that participate
in indexing and searching. A user might query a certain amount of queries per day,
while their computer can answer another certain amount of queries per day®. The
computer can answer orders of magnitudes more queries than a single average user can
manually provide. So a home users who uses tens or hundreds of “googlings” per day,
and also run a client that supports the network, are expected not only to not have to
pay but even to earn, as they’ll serve others more than they consume. But we will
also have heavier-usage users that may consume the search services in large amounts

(e.g. automatically). Such users will have to pay and will not end up break even. This

53Moreover, the world’s strongest supercomputers are only as strong as several thousands of com-
modity GPUs. Also, much of Google’s computers are old and weak ones, weaker than a common
smartphone. Heavily utilizing cheap old hardware was in fact one of Google’s innovations.

54 Answer to other users, as no single user will store the whole internet, while one can’t predict
tomorrow’s queries.

40

points to a characteristic of an economy built to be fair in the sense that the money
flows in the “right” rather the “wrong” direction: it’s a zero-sum game, yet the money

flows from the big and rich entities to the smaller ones.

3.5.2 Semantic Search

If stopping here, we didn’t actually contribute much: so we’ll have a better and decen-
tralized search engine that gives many users some income, but life will continue more or
less the same. Searching, as we know it, is no different than searching a web page with
Ctrl-F together with a thesaurus. That’s what Google is doing, more or less: it Ctrl-F’s
the internet under an open thesaurus. But making an economy out of knowledge has
many more possibilities. Importantly, we’d like to incorporate into our knowledge econ-
omy also deeper and more meaningful knowledge than “those words or their equivalents
are mentioned on that website”.

Ultimately, we’d like to upload many (if not most) of our thoughts, opinions, and
intellect, to the internet. We already do it. But all our search engines know to do is
to use Ctrl-F and a thesaurus, namely they operate on a very shallow level, not even
“shallow understanding”. But knowledge that people actually seek for never comes in
this form. We don’t seek for documents that contain certain words but for documents
that actually answer our questions. Similarly, we don’t seek for professionals in which all
they know is to search the internet, but we seek for professionals from which we expect
a deep understanding of their field of expertise, and not their ability to mention a bag
of words. Otherwise we’d do good enough with Google and wouldn’t need professionals
anymore.

Thanks to Tau’s knowledge formalization capabilities, and with time, the dream of
semantic web search engine can come true on top of the mentioned decentralized search

engine.

3.5.3 Automatic Businessman

Users have their own local assets, being computational resources, knowledge, coins, and
possibly other assets that they allow their formalized worldview to take into consider-
ation. Agoras will then be able to tailor a deal by looking at the available assets and

contracts offered out there, and by publishing bids for certain assets or contracts, all

41

from a coherent and logically proven plan of combining the assets and opportunities
into a good deal. One can even reach an extent that is unheard of in common auto-
matic planners: the user will be able to ask Agoras for deals that don’t break laws and
regulations, once law is formalized over the system. This is just a small example of
what a logical reasoner may perform in an economy.

As we explained, Agoras will also contain a computational resources market and a
future contracts market. The Automatic Businessman is therefore a holistic application
that culminates all parts of Tau and Agoras capabilities. It should also be remarked
that as for now, only Tau and Agoras offer a real method for achieving the [relatively]

old concept of DAOs (Decentralized Autonomous Organizations).

42

4 Evolution and Impact

4.1 More Fair Legislation and Economy

A major assumption in economics is the one of efficient markets (the “Efficient Mar-
ket Hypothesis”) which, roughly speaking, demonstrates that the speed of information
propagation in the economy is tied to the lack of arbitrage, rendering the market “ef-
ficient”. People with privileged knowledge, e.g. insider trading, have higher chances of
making profit, which is of course unfair and mostly illegal. The hypothesis also point
that in an efficient economy the only way to make profit is by taking risks. Therefore
better propagation of knowledge is a matter of fairness, because it entails that people
cannot make profit without taking the associated risk. This doesn’t mean that a fair
economy 1is just like a casino: in a casino the expected profit is negative while in a
healthy economy the expected profit is positive. This also doesn’t mean that an effi-
cient economy is automatically fair. It only means that a priviledged ability to make
profits under no or less risks, is unfair.

Tau and Agoras take the information-propagation levels to new orders of magnitude,
and by that offer a much more efficient economy than ever existed. Another aspect of
fairness is the deflationary nature of Agoras: Agoras will not print new coins. From
all new fiat money printed over, say, the last decade, how much of it did you and I
receive? Zero. It amounts to an implicit tax, given to parties which we never intended
to personally financially support. It is remarkable that Agoras is still able to recover
risk-free interest without any inflationary aspect.

An economy cannot exist without a society, and is a thing within society. Unsurpris-
ingly, all economists consider themselves as a kind of social scientists. Unlike physics®,
economics depends, and cannot be defined without, concepts that exist purely in human
imagination. The principle that yields this status of economics is simple but very deep:
we cannot have an economy without some subjective valuation (or “utility function”),
namely the ability to say “I prefer this over that”. This can be thought of like taste:
some prefer chocolate over ice cream, and some go the other way around. They might
even be ready to pay different prices. In the bottom line it comes down to ethical

6

value systems®®. Such values are indeed not physical terms but exist purely on our

55 At least apparently.
56Ethics, in its broad sense, is nothing but the definitions of “good” and “bad”, “better” and “worse”,

43

imagination. And this doesn’t make them a single bit less important.

Fairness of economy depends very much on the social and legal climate. One can-
not do business without knowing the legal implications of relevant scenarios, and one
cannot do business in the absence of truth and trust. We offer, for the first time, a
sound solution for reasonable laws and legislation, justice, ethics, and social contracts,
one that can even be automatically embedded into business plans, cf. the above Auto-
matic Businessman. Furthermore, the formalization of values gives rise to automatically

avoiding what you define as “bad” and achieving what you define as “good”.

4.2 The Critical Mass and the Tau Chain Reaction

We emphasized that the futuristic features enabling effective large scale discussions
depend on the usage of formal languages. How can we expect Tau to have a large user
base given those language barriers?

Indeed we expect the initial users to be familiar with such languages, e.g. by being
involved in formal logic or in programming. But those initial users will deal with
programming Tau itself and enriching its knowledgebase (and also adding and improving
languages over the Internet of Languages), as Tau is nothing but a software controlled
by its users. Having, say, one hundred users that program the system by merely stating
(implicitly or explicitly, and possibly in a disorganized fashion) pieces of what they
want Tau to do, is a very small user base on one hand, but on the other hand it is a
large development team developing the system itself and formalizing knowledge, and by
that they’ll make it accessible to slightly more users, say, two hundred users. A critical
mass of initial users should therefore be enough to start a chain reaction of advancing

the system with time to fit larger and larger audiences. cf. also subsection

4.3 The Singularity

Given one wish, what would be the best wish to choose? An answer that creeps in is
infinitely more wishes. Nowadays, the scientific and technological equivalent of one wish
which amounts to infinitely more wishes, is the creation of an Al, or in a more modern

terminology, Artificial General Intelligence (AGI). So much so, that it is virtually not

and in this sense it is a valuation system.

44

worth putting serious efforts into anything else other than achieving an intelligence
higher than ours, as this will let us fulfill infinitely more wishes. The future point in
time in which an AGI becomes smarter than all of us is known as the Singularity.

The task of creating such an AGI is overwhelming. As experience shows, not even
large corporations are capable of achieving it. The main difficulty is not creating an
“artificial brain”, but making it know everything it should know in order to really ad-
vance us as would a very smart person. Formalizing sufficient parts of human knowledge
is a huge task that cannot be done by means which are currently reasonable, e.g., a
million people voluntarily®” contributing small parts of knowledge each. But in a dis-
cussion platform with many (millions) of participants writing in formal languages, such
a knowledge base has a real chance to emerge for the first time in history.

Our brain has an order of magnitude of 10G neurons operating in frequency of 5-
50Hz. Common laptops have memory of such 10G order of magnitude®® but operate
in about 3GHz", namely around a billion times faster. Common GPUs would have
about x1000 more computational power than a common laptop, so we end up with
about x1,000,000,000,000 (a trillion) speedup. So hardware-wise, we're already beyond
the human brain (even if we’d count synapses rather neurons). However it turns out
that our brain is even much weaker than the counting neurons argument suggests: our
short term memory has a capacity of about 5-15 items. No such limitation is in place
for machines. Over those 5-15 items we can perform logical reasoning and inference
and derive new knowledge, this, in a speed of no more than few times per second (to
be generous). Is it therefore the case that a network of machines are able to recover
the logical consequences which humans inferred over the course of history in the form
of math and philosophy and science, overnight?

There’s no reason why they shouldn’t.

Furthermore, humans make mistakes, many of them are of the kind that machines
aren’t susceptible to. Sometimes we’re building on a mistaken result, holding the mis-
take for a short or long time. Machines don’t even need to look back: once programmed
correctly, a result is always valid without hesitation. Back-of-the-envelope estimation

would compare this situation to a random walk, and suggest that merely the absence

57 As otherwise this won’t be possible due to being too expensive.
58 And even much more if taking disks into account.
59 Add circa x10 for multithreaded CPUs.

45

of mistakes should make knowledge advance quadratically faster.

Another quadratic speedup comes from connecting the human’s minds, which is all
about human-machine-human communication. Tau offers combining brain powers on
a large scale. The number of all possible connections between nodes/users/worldviews
also grows quadratically. We're therefore already at a fourth power of acceleration,
times a large constant which is the speed of calculation.

But there’s even more to add to this estimate, which is the case of knowledge reuse.
People forget things, in fact we remember a very narrow part of reality. It occurs to
all of us that we have an open question for a long time, and suddenly we realize that
we already knew the answer, just never linked it to that question. This is not going to
happen over Tau.

Yet another booster of knowledge creation and propagation are economical incen-
tives, which is what Agoras’ economy of knowledge is all about.

Humanity never experienced nearly such an acceleration of knowledge growth. Where
will it take us? Well, it’ll surely bring us to the point of Singularity more sooner than

later.

References

[1] H.D. Ebbinghaus, J. Flum, 1999, “Finite Model Theory”.
[2] S. Abiteboul, R. Hull, V. Vianu, 1995, “Foundations of Databases”.

[3] Y. Futamura, 1999, “Partial Evaluation of Computation Process — An Approach

to a Compiler-Compiler”.

[4] A. Bauer, 2016, “On Self-Interpreters for System-T and Other Typed Lambda-

Calculi”.

[5] A. Bauer, 2014, Stackexchange answer, “A total language that only a Turing com-

plete language can interpret’.
[6] P. Suber, 1990, “The Paradox of Self-Amendment”.

[7] C.T. McBride, 2003, Haskell mailing list, “On Termination’.

46

http://math.andrej.com/wp-content/uploads/2016/01/self-interpreter-for-T.pdf
http://math.andrej.com/wp-content/uploads/2016/01/self-interpreter-for-T.pdf
https://cstheory.stackexchange.com/q/24994
https://cstheory.stackexchange.com/q/24994
https://mail.haskell.org/pipermail/haskell-cafe/2003-May/004343.html

[8] S. Nakamoto, 2008, “Bitcoin: A Peer-to-Peer Electronic Cash System.
[9] Bitcoin Wiki, “Rapidly-adjusted (micro)payments to a pre-determined party/’.

[10] F. Brandt, V. Conitzer, U. Endriss, J. Lang, A. D. Procaccia, 2016, “Handbook of

Computational Social Choice”.
[11] O. Asor, 2015, “About Tau-Chain”
[12] O. Asor, 2014, “About Zennet.
[13] O. Asor, 2014, “Zennet Pricing Algorithm”.

[14] O. Asor, 2014, “Bitagoras’.

47

https://bitcoin.org/bitcoin.pdf
https://en.bitcoin.it/wiki/Contract#Example_7:_Rapidly-adjusted_.28micro.29payments_to_a_pre-determined_party
https://arxiv.org/abs/1502.04120
http://zennet.sc/about
http://zennet.sc/zennetpricing.pdf%20
https://github.com/naturalog/Bitagoras

A Summary of Problems, Questions, and Answers

We sketch here a list of problems and questions that are addressed in this paper together

with a short description of the proposed solutions and answers:

Question How can many people effectively share opinions and reach a collaborative

decision?
Answer By retaining features of small-scale discussions in large scale settings.
Question How may programs accurately detect what users agree on?
Answer By the users formalizing their opinions in a decidable formal logic.

Question How to avoid information loss and negligence when processing large amounts

of information?

Answer By using formal logic and the aid of the machine, no piece of knowledge will

be effectively lost.
Question Which languages exactly should the users use?

Answer Not a single language but a set of languages that may grow and evolve over

time.
Question How to avoid paradoxes arising from self-amendment?
Answer Adhering to the laws of laws (presented below) and logics that admit them.
Question How to avoid running into a deadlock?
Answer This is not a solvable problem, however we offer some remedies.
Question What is the optimal governance mechanism for the Tau network?

Answer There is no optimal mechanism, each one has its own pros and cons. The first

users will have to discuss and agree on which one to implement.
Question Can Tau solve the fake news problem?

Answer No. It cannot distinguish between truths and opinions.

48

Question Will Tau be usable by virtually all people or only by e.g. programmers?
Answer Not widely usable at first but will become so with time.

Question How is the time-ordering of the various Tau versions is determined over the

network?
Answer Using a blockchain.
Question How to create an efficient knowledge economy?
Answer By introducing knowledge-cash transactions.
Question How to support inflation-free risk-free interest?
Answer By implementing zero-delta portfolios.
Question Can Tau bring to life the dream of Artificial General Intelligence?
Answer Yes, with time.
Question What is one’s ultimate wish?

Answer Tau.

49

B Tau and Classical Social Choice Theory

For completeness we briefly review few elements from the classical theory of social choice
and compare them to Tau’s setting. For reference and more information cf. [10].
Classical social choice theory deals with a society choosing a course of action from
some available alternatives. Normally, individuals within the society will cast their vote
for this or that option®. At other times they may rank alternatives to form what is
known as a preference profile®'. In some situations, reasonable voting methods and

rules will be fairly simple. For example we quote May’s theorem:

Theorem (May’s Theorem). For any 2-candidate election with an odd number of vot-
ers, the winning rule of simple majority vote is the only voting system which never ends
with a tie, is anonymous (treating all voters equally), neutral (each candidate is treated
equally), and monotone (if one candidate is chosen, and some voters change their vote

to vote to this winning candidate, then that candidate remains the winner).

Many voting contexts, however, do not satisfy all these assumptions, e.g. when
three or more alternatives are considered (cf. Arrow’s theorem below).

The process of aggregating individual preferences in a multi-candidate setting is
abstracted within the framework of social choice theory by the so-called Social Welfare
Function (SWF). The SWF is concerned with preference profiles which are assumed
(in classical social choice theory) to form a linear order, namely there’s a preference
relation between any two alternatives, and this relation is transitive®® and therefore
acyclic. For the most part, the SWF is a mapping from a set of preference profiles (one
per individual) to another preference profile representing the collective view within the
society®. This framework leads to a number of surprising results. The first of these,
observed by Marquis de Condorcet (1785), is the existence of majority cycles, where
collective preference violates what one could expect from any rational individual, as we

demonstrate now.

60We already pointed out in the introduction that voting cannot scale and stay fair at the same
time.

61 A preference profile is therefore a set of claims of the form “I prefer X over Y”, as we shall detail
below.

62Transitivity means that if x is preferred over y, and y is preferred over z, then x is preferred over
z.

63Tn other words, is a function taking a set of linear orders, into a single linear order.

20

Consider the task of ranking three alternatives x,y, z, based on the preferences of
three voters, A, B, and C: x <y < z, y < z < x, and z < x < y, respectively. Here,
the binary relation < is a linear order on the set of alternatives (z < y reads: y is
favored over x). Exercising a simple majority rule reveals that participants A and C
prefer y over x, participants A and B prefer z over y, and participants B and C prefer
x over z, so the majority (two in this case) decrees x < y < z < x, which is clearly
a contradiction. This situation, known as the Condorcet paradox, may be averted by
adding more opinions. For example, taking two more voters, D and F, whose ranking
profiles are: = < z < y and y < x < z respectively, will turn the majority rule’s
conclusion to become z < y < z.

Arrow’s impossibility theorem, another key result in social choice theory, states
that under some fairness conditions the only SWF possible is a dictatorship, where the
choice function mimics the preference of only a single individual, the dictator. Formally,

Arrow’s theorem states:

Theorem (Arrow’s Impossibility Theorem). With three or more candidates and any
number of voters, if the SWF always deterministically produces a single winner, and
respects unanimity a.k.a. Pareto efficiency (if all voters prefer a certain candidate, then
the SWF chooses this candidate), and satisfies the Independence of Irrelevant Alterna-
tives (IIA) condition (the SWEF orders each pair of candidates solely by the relations
between those two candidates in each individual’s preference profile), then this SWF is
a dictatorship (there exists a single voter such that the SWFE always chooses their profile
as the final result).

Researchers have criticized and in turn relaxed some of Arrow’s assumptions, most
prominently the ITA condition. Indeed voters may prefer a certain ordering between
two alternatives depending on the ordering between other alternatives.

Tau’s setting is strictly more general. Opinions may be any relation (alternatively
any logical formula), not only a linear order. Tau’s default SWF is as follows: if one
user has two opinions A and B, and another user has two opinions C' and D, all being
logical formulas, then the consensus is (AV B) A (C'V D). Observe that this SWF
satisfy all requirements listed in May’s theorem and also the requirements in Arrow’s
theorem except ITA and the uniqueness of the winning alternative. Lack of uniqueness

may pose a Buridan’s mule situation. This can be circumvented by waiting for more

o1

opinions to narrow down the available options. Otherwise, we fall back to solutions

described in [2.3.2

02

C Tau vs. Nomic

This paper would not be complete without some appeal to philosophy of law. In what
follows we quote from Peter Suber’s exemplary exposition in [6]. We comment on his
points as well as showing how our logics of choice solve the raised problems. The
footnotes and bold markings in the quotes below do not appear in the original text but

are our additions. Suber writes in section 21:

“Because the paradox of self-amendment is a special case of the paradox of
omnipotence®, our central question is whether a deity or AC% can irrevo-
cably limit its own power.”

Our design allows an amendment clause to indeed irrevocably limit its own power, e.g.
the law “all laws can be deleted given majority vote, including this law”. Sketching it
in FO|PFP|+EVAL is trivial. Suber continues:

“...The logical or formalist view of law as it affects this problem I am calling
the inference model of legal change and validity. Under the inference model,
legal change is modeled by deductive inference. The authorizing rule of
change (for example, the old AC) is one premise, the fact of enactment
under the authorizing rule or procedure is another, and the validity of the
new rule (new AC) is the conclusion.

Rule: If act A is done, then rule B is valid.
Fact: Act A is done.
Conclusion: Therefore, rule B is valid.

The theory is that the amendment is lawful if and only if this deduction is
valid and its premises are true.

Self-amendment occurs when the rule affirmed in the conclusion is meant
to replace the rule in the premises, that is, when the rule in the premises
refers to itself.”

Suber demonstrates here that the logic of law should be both recursive and non-
monotonic. We have already pointed out how our logics of choice are recursive, and we

continue to discuss non-monotonicity:

64]s the famous old paradox of “Can God create a stone so heavy such that he cannot lift it?”.
Our personal take on this paradox, according to our current analysis of self-reference, is that this is
indeed a good enough justification for rejecting the notion of something being omnipotent under all
circumstances.

65 Amendment Clause.

23

“Irrevocable self-limitation is self-contradictory on this model because it
requires an inconsistency between a premise and the conclusion of the in-
ference, when the premises themselves are (or may as well be) internally
consistent. The rule of change that sits in the premise is inconsistent with
its own invalidation, or with the exclusive validity of its successor asserted
in the conclusion. Alf Ross, the Danish logician and jurist, has argued in
detail that by formal criteria such an inference must be invalid.”

We have shown that these claims are in fact not true. Self-contradiction and inconsis-
tency may be avoided indeed if we allow the conclusion to take the form: “conclusion:
delete law number X”. This ability to delete is a main characteristic of the PFP operator
comparing to other logical fixed-point operators (e.g. TC/LFP/GFP/IFP), showing the
rareness of a supporting logic indeed. And this is what non-monotonic logic refers to:
the ability to retract assertions. Arguably, the easiest way to see a model for this case is
space-limited Turing machines®. It is no different than the concept of “Self-Modifying
code”, and space-limited classes of machines under the halting condition of detecting

same configuration twice, are indeed closed under self-modifying code®”. Further:

“...There may well be a way to dissolve the paradox for the inference model
or for formal logic generally. (We will see that satisfying the inference model
is more difficult than satisfying formal logic alone.) Such dissolution would
take the form of removing the inconsistency between premise and conclusion
in the inference that models the act of amendment. A dissolution of this
kind would satisfy logicians even if it had absurd consequences for law; but
I have not been able to find even one dissolution of this kind that stands up
to analysis.”

It is of no surprise that it is so hard to find a logic that supports the case of self-
amendment: indeed almost all logics considered in the literature of mathematical logic,
are monotonic. Moreover, almost all of them don’t know to return the “undefined”
valueb®, a necessity demonstrated in Theorem 1 and by Protagoras’ paradox. However
we have shown that the self-amendment paradox may indeed be resolved under very

mild assumptions being the laws of laws. In fact Suber doesn’t consider decidability

66Supplying a model proves a logic to be consistent, and Turing machines are models just fine.

67This is trivial because allowing self-modification does not alter the halting condition a single bit.
It is also trivial to implement self-modifying code in P-DATALOG by adding nullary relation symbols
to enable/disable rules.

68 Equivalently non-halting machines as in our derivation above.

o4

here (while he should have), so any language with quoting and eval operators would

resolve the paradox%?, in particular, the set of all Turing machines. Continuing:

“We may distinguish two ways to "solve" a paradox. Paradoxes are not
mere contradictions; they are not nearly as tame. But their bite lies in their
way of making contradiction appear inescapable. One kind of solution is
to escape contradiction by a path not seen by others. I am calling this a
dissolution of the paradox.”

Our solution is indeed a dissolution of the paradox, in contrast to:

“Another way is to explain why contradiction is harmless, whether it is
escapable or not. This will only work when contradiction is harmless, of
course, and most of the argument in support of solutions of this kind will be
spent in that cause. This will not dissolve the paradox, but will excuse and
domesticate it, removing its sting and threat. It is much like what lawyers
call an "affirmative defense": admit that you did it, but claim some excuse
like insanity. The second kind of solution is more radical than it seems and
requires, in effect, an insanity defense for law itself.

In short, my thesis is that no dissolution satisfies the terms of the
inference model, but that when we reject that model we find a
number of plausible domesticating strategies. First I will consider
various attempts to dissolve the paradox.”

We exhibit here the difficulty of dealing with self-amendment, to such a great extent
that philosophers even have to accept the existence of a contradiction, or in other
words, to reject logic. Rejecting logic due to a crisis of inability to understand deep

and important topics is not new™

, a situation which Suber rightly defines as insanity.
Fortunately, on Tau, we do not have to appeal to insanity. Later on he continues to

discuss the acceptance of a contradiction:

“...In standard logic all propositions follow validly from a contradiction.
Therefore, one solution might be deliberately to make the premises of the

69This is true even for non-monotonic logics since eval can recover non-monotonicity. Hint for the
reason: Datalog+EVAL may delete by relying on its ability to have negated extensional symbols. In
fact FO+EVAL equipped with the “not same state twice” halting condition is already equivalent to
FO[PFP], as we have demonstrated how recursion may be simulated using eval.

"OEven quantum mechanics rejects logic by coming up with a new and contradictory logic, cf. “Quan-
tum Logic”.

25

inference that models the change internally inconsistent. This would cer-
tainly work to make the new AC a logically valid consequence of the old
one. But it would work only at the cost of assuring that every AC is inter-
nally inconsistent. This result is inadmissible for the inference model, which
cannot allow inconsistent rules simultaneous validity. However, if one likes,
one may consider the total invalidation of the AC a solution satisfactory to
logic that is repugnant only to law.”

which is of course a case which we cannot allow. Suber does mention that he doesn’t
rule out the possibility of some logic to support self-amendment, but his unjustified

pessimistic tone can easily be observed:

“...Most philosophers who have approached the problem (primarily through
the theological paradox of omnipotence) evidently hope that a solution can
be found that does not violate or require the inapplicability of formal logic.
I have not argued for any conclusion that should dampen that hope. I have
argued that formal logic has very limited application in law, but
not that a dissolution of the legal form of the paradox is strictly impossible
by logical criteria. Hence I admit —without the same earnestness of hope—
that there may well be a dissolution of the paradox satisfactory to formal
logic. All T have argued is (1) that the obvious attempts at such dissolution
fail, and (2) that in any case law can dispense with such a dissolution. The
second point is the more important thesis, and stands (if it stands at all)
even if a satisfactory logical dissolution should be discovered tomorrow.

In this sense the state of self-amendment today is analogous to the state of
calculus between Leibniz and Weierstrass. There may be a way to render it
coherent and consistent, but so far we lack the theory to do so. Meantime
we use it with good results. The difference is that a coherent theory
of self~-amendment is unnecessary for law, while a coherent theory of
the calculus was vitally necessary for mathematics.

If self-amendment would be logically impeccable if only certain niceties were
observed in rewording the clause and in transacting its self-change, then a
legal system may still ignore those niceties utterly. This remains the case
whether the required changes are ingeniously simple or hideously complex.
Today lawmakers listen to what logicians say they should do only to the
extent that logicians form a weighty voting bloc in their constituencies.
There is no reason to think that their lawmaking acts will cease to
be valid if the logicians should one day become correct, any more
than those lawmaking acts are invalidated when the weightier loyal
opposition is correct. Legal validity is a matter of power and social
practice, not abstract correctness.”

26

We again observe the theme of “let’s live with the contradiction”, but even worse: he
claims that lawmakers’ actions remain valid even in the presence of a contradiction!
This explains a lot about the dystopia we live at. And this approach is provably
dangerous: form a contradiction one can derive anything as Suber himself mentioned
“In standard logic all propositions follow validly from a contradiction.””. Worse, the
distinguishment between “what is good for logicians” vs. “what is good for lawmakers”
is beyond the insanity which Suber referred to above, but one may even call it evilness.
No one can reject logic, not quantum mechanics, not even the law, not even lawmakers
and law enforcers. Let us not forget the many innocent lives destroyed due to incoherent

judicial system.

“...There will be no solution satisfactory to formal logic if formal logic bars all
self-reference, say, by incorporating a theory of types, and if self-amendment
unavoidably requires self-reference.”

Indeed type-theory will recover the paradox of “laws of changing the laws of laws of

9

changing the laws...” ad infinitum. This is one mistake in the old Tau design which
was based on type theory and total languages. However here Suber is getting close to

our solution:

“Ross distinguishes between logical and legal contradictions. A logical con-
tradiction exists between any statement and its negation. We don’t have
to assert one or both of the statements for the contradiction to exist. A
legal contradiction exists between any two inconsistent laws that are both
valid at the same time. If they are not both valid at the same time, they
will be logically but not legally contradictory. Armed with this distinction,
Ross has an answer to the most common attempt to dissolve the paradox
of self-amendment.”

Indeed a time aspect, which is PFP’s staging aspect (which is not exactly “time” but is
the same for this matter), solves the paradox. But this doesn’t give rise to a distinction
between “logical contradiction” and “legal contradiction”, not a single bit. One only
needs to find a logic that is suitable for law, one that can soundly model self-change,

as our logics of choice. Suber continues on this point:

“The most common attempt to dissolve the paradox has been to insure, or
assume, that the old and new ACs are never valid and supreme at the same

LA k.a. the “principle of explosion” or ez falso quodlibet.

27

time. Temporal overlap can be prevented; but preventing it merely
avoids a legal contradiction, not a logical contradiction. It keeps
inconsistent rules from enjoying simultaneous legal validity, but thereby pre-
supposes their logical inconsistency. That inconsistency invalidates the in-
ference that models self-amendment because a logical contradiction between
premise and conclusion’ (when the premises are internally consistent) suf-
fices to invalidate a deduction. As Ross often puts it, the invalidity consists
in our attempt to derive from one norm a second norm inconsistent with
the first.”

which is indeed the correct point of view, and simultaneous write and delete in PFP
amount to a contradiction (as in the Appendix @ where we explain the halting condi-
tion). However Suber suggests that it doesn’t prevent a logical contradiction, a state-
ment which we do not agree with, as we have pointed out to a logic that soundly
models the situation, and the inability to accept legal world which rejects logic. Suber

continues for the case where legal and logical contradiction are not distinguished:

“If one rejects the distinction between logical and legal contradiction, but
still holds the inference model of legal change, then one is no better situated
to overcome the invalidity of the inference that models the self-amendment.
If the contradiction is supposed to disappear because the old AC loses va-
lidity at the moment the new one acquires validity, then in the inference
that models this process the assertion of a key premise must be suspended
in mid-inference. Even if this successfully removes the inconsistency
in the inference that models the self-amendment, it replaces it
with a new fallacy. Logicians do not have a name for this fal-
lacy because it cannot be performed in ordinary argument where
the inference (conceived logically, as opposed to psychologically)
is instantaneous or non-temporal.”

which basically argues that non-monotonic logic is illogical, a point which is of course
not true. The mere fact that our logics of choice have a model as above, proves this.
We could have continued commenting on Suber’s summary but for the sake of brevity
we will save that opportunity for another time. For now let us compare Suber’s Nomic
game (appearing in the appendix of [6]) to our solution.
Nomic’s approaches self-amendment by allowing the declaration of rules as either

“mutable” or “immutable”, together with the voters’ ability to “transmute” a rule, namely

72X ->not X.

o8

to transform it from mutable to immutable and vice versa. In short, in every round,
each participant may raise for voting either a new rule, or a transmutation of an existing

rule, or an amendment of an existing mutable rule. However it does not account for:

e Large scale. What if we have a million participants, will we then have to wait a

million turns in order for everyone to merely state their opinion?

e Decidability. How can we even infer whether one rule contradicts another in the

absence of decidability?

e Logical coherence. At each point of time the current body of law may be logically
coherent, but the process of changing the laws in Nomic is external to the laws
themselves. Laws and lawmaking therefore don’t come along under the same

logical formalism, in Nomic.

and in fact Nomic solves nothing from the raised paradoxes. Indeed as Suber writes on

the appendix:

“_..In Nomic situations may easily arise in which it is very hard™ to deter-
mine whether a move is legal. Moreover, paradoxes may arise in Nomic that
paralyze judgment. Occasionally this will be due to the poor drafting of a
rule, but it may also arise from a rule that is well-drafted but mischievous.
The variety of such paradoxes is truly impossible to anticipate. Rule 213 is
designed to cope with them as well as possible without cluttering the Initial
Set with too many legalistic qualifications. Note that Rule 213 allows a wily
player to create a paradox, get it passed (if the rule seems innocent
enough to the other players), and thereby win.”

730r even impossible in the absence decidability.

29

D P-DATALOG Language

We give a tutorial for how the proposed logic that fits the laws of laws looks like. As
we mentioned, it’s referred to as P-DATALOG on [I], and is equivalent to FO[PFP]
over ordered structures. It also captures the complexity class PSPACE over ordered
structures. It is also the core part of the language TML. TML is logically equivalent to
P-DATALOG and contains P-DATALOG, while enhanced with conservative™ exten-
tions for convenience. But before we start describing this language, we first describe
the language Datalog.

A Datalog program is a set of facts and rules, each rule comes with a head and a
body. The head is the consequence and the bodies are the antecedents. A fact is a rule
with no body, expressing that it holds disregarding other facts. Facts are also inputs
to a program. So the rule “if it’s raining then I should take an umbrella” has as body
“it’s raining” and as head “I should take an umbrella”’, and if the input contained the
fact “it’s raining” then the output will contain “I should take an umbrella”.

° namely the databases which are made

Datalog operates over relational databases’
of tables™. The order of columns on the tables matters while the order of the doesn’t
matter””. Each cell on the table can take values from some finite set, called the Universe,
or Domain of Discourse. In principle the universe may be infinite but decidabllity is
recovered only in the finite case.

Let us take the main example in the literature for a Datalog program, the transitive

closure of a graph:
T(?7x 7y) :— E(?x ?y); E(?x ?z), T(?y ?z).

This reads as follows: given a graph as a list of edges E(<vertexl> <vertex2>),
then the resulted graph T is also a list of edges, where:

1. T(x y), namely there’s an edge between x and y in the resulted graph, if E(x y),

namely if this edge occurs in the input graph as well, or,

2. There’s an edge from x to z on the original graph, for some vertex z, and we also

already concluded that an edge from y to z appears on T.

7 Namely such that keep the logical expressiveness intact.

">Which may be seen as a random-access machine with a multidimensional memory.
"6 A table with k columns is nothing but a k-ary relation.

""Namely a table, just like a relation, is a set of tuples.

60

The resulted graph T will therefore contain an edge between any two vertices that are
reachable from one another on the input graph. Note that T and E are names of tables,
also referred to as relation symbols.

An input to such a program may look like
E(1 2). E(2 3). E(3 4).
For this input, the output would be:

E(1 2). E(2 3). E(3 4).
T(1 2). T(2 3). T(3 4).
T(1 3). T(1 4). T(2 4).

Execution of a Datalog program is made by so-called stages in a manner known as

778 In each stage, each rule “fires” once and only once. A “firing”

“forward chaining
of a rule means that we substitute in the bodies of the rule all facts on the current
database, and then we possibly infer new terms (given at the head of the rule) to
add to the database. In the first stage, all facts (stated either in the program or in its
input) are substituted in the bodies and we obtain a list of facts to add to the database.
We add them, and only then we proceed to the next stage, and so on. The program
terminated when there are no more new facts to add to the database, or in other words,
where the database didn’t change in two consecutive stages.

In Datalog we distinguish between extensional and intensional relations. A relation
symbol appearing at least once in the head of a rule is called intensional, otherwise it is
extensional. So on our example, T is intensional and E is extensional. Datalog allows
negation over intentional symbols only. P-DATALOG is an extension of Datalog where
negation may appear everywhere, including in the head or body of a rule. There are
many ways to give semantics to Datalog programs with negation, most notably the Well-
Founded Semantics (WFS) and stratified Datalog. Those two are PTIME-Complete,
while P-DATALOG is PSPACE-Complete.

In P-DATALOG, negation in heads means deletion. Just like a positive head means
to add records to the database, a negative head means the deletion of records. Negation
in bodies naturally refers to all substitutions of variables that do not satisfy the relation.

However for both negations in heads and in bodies, the order of execution of the program

"8There are more ways for evaluating a Datalog program but we give the case which we can use in
order to demonstrate P-DATALOG.

61

becomes significant. Negation in bodies is interpreted per each stage. So it might be
the case where a negated term in a body is true at one stage, but not in a later stage.
Similarly, deletion, by having negated heads, is done relative to the current stage only.

For example, on
E(?x ?y) :— E(?x ?z), E(?7z ?y), "E(7x 7x).

the variable ?x will bind to all values such that E(?x 7x) does not appear in the

current-step database. Similarly
TE(7x 7x) — E(7x ?x).

Will make the next-step database to not include all terms of the form E(7x 7x)
included in the current step database.

Unlike in Datalog, a fixed point doesn’t necessarily exist. The termination condition
for P-DATALOG is therefore as follows. If the same term is inserted and deleted at the
same stage, the program halts and evaluates to “false”, or a contradiction. Otherwise
it continues to the next stage again performing a single evaluation of every rule. This

process must eventually halt in either of the following forms:

1. The database obtained from the current step is equal to the database resulted
from the previous step. This is a fixed point. When this happens, the resulted

database is considered as the final result.

2. Or, the database obtained in one step equals to the database state in some previ-
ous, not immediate predecessor, state. In this case the program will loop forever
unless we detect it and halt the program, and is therefore evaluated to “undefined”,

as no fixed point exists.

Note that only one of the two options can happen because the arity and the universe
size are fixed. Ultimately, for universe size n and maximum arity k, they will occur in
no more than 2" steps.

It should be remarked that the PFP halting condition and negation in bodies pose a
serious performance difficulty, even reaching reasonable performance. We have mostly
solved this problem by incorporating Binary Decision Diagrams, but the details are out
of the scope of this paper. We shall only mention that Binary Decision Diagrams also

give a very significant compression of data that typically arises during logical reasoning,

62

and by that may perform reasoning tasks that are far from being feasible without such
a compression.

It should also be noted that the body may be an arbitrary first or second order logic
formula. It is then still equivalent to P-DATALOG and is still PSPACE-Complete [1].

63

E Proof of Theorem 2

We assume that () translates a formula into a relational structure representing a string
which in turn represents the formula. Since the set of all formulas in FO[PFP| with or
without Q+E may be given in a context-free grammar, recognizing whether a structure
indeed represents a formula is expressible in FO[PFP| (can be seen easily by using e.g.
“definite clause grammars”, or by complexity-theoretic considerations). Given a formula
in FO[PFP|+EVAL we replace all occurrences of E with a code that detects whether
the structure is indeed a well formed formula, and if not, it returns 0. Otherwise, we
convert that occurrence of E to pure FO[PFP| formulae. We sketch the next steps by

example over the formula

F:=R(x,2) NR(z,y) = R(x,y)
first:
Q(F)=R(0,z,2),R(0,2,y9),R(1,z,y)

where the additional 0 and 1 tells us which is term is a body term and which is a
head term, and additional such constants should be added in order to specify the “rule
number” as in FO[PFP| taking the form of P-DATALOG (see Appendix [D)) but we
omitted this and other small details in order to demonstrate the main idea, and the
rest is left as an easy exercise to the reader. We also implicitly assume an additional
relation V' which tells us which symbols are variables and which are constants (this V'
should be added explicitly to the translated formula, but again, we only sketch the high

level details here). Now the evaluation function
E@Q(F)=E(R0,2,2),R(0,2,y), R(1,z,y))
may be replaced by a formula G after applying the PFP operator to it:
G :=Va,b,c,d,e, f,qg,h,1, 7.

R(a,b) < R(1,a,0) AR (0,c,d)AR(0,e, /YNR(g,h)AR (i,5) AT (a,b,c,d, e, f, g, h,i,j)

64

where T is defined by

(c=d) = (g=h)A
(c=e)=(g=10)A
(c=/f)=(g=0)A
(d=e) = (h=10)A
(d=f) = (h=j)A
(e=f)—= (i=1)

note that the resulted translation holds not only for ' but to more formulas because
T works for any choice of variables in the bodies. We can now replace each occurrence
of E(Q(F),R) with PFP|G,R|. We then convert the resulting FO[PFP] formula to
P-DATALOG as demonstrated in [IJ.

65

	Introduction
	Tau-Chain
	Human-Machine-Human Communication
	Large-Scale Discussion Platform
	Worldviews and Teams
	Truths vs. Opinions
	Questions vs. Answers
	Understanding Each Other

	Large-Scale Decentralized Social Choice
	Overview of the Self-Amendment Process
	Choice Dilemmas
	Blockchain

	Collaborative Software Development
	Logics for Laws
	The Laws of Laws
	Derivation of the Logic

	The Internet of Languages
	Tau Meta-Language
	Futamura's Projections

	Agoras
	Contracts
	Economics of Knowledge
	Production, Supply, Demand, and Pricing
	Knowledge-Cash Transactions
	Freestyle Knowledge

	Computational Resources Market
	Derivatives and Risk-Free Interest
	Applications
	Decentralized Search Engine
	Semantic Search
	Automatic Businessman

	Evolution and Impact
	More Fair Legislation and Economy
	The Critical Mass and the Tau Chain Reaction
	The Singularity

	Summary of Problems, Questions, and Answers
	Tau and Classical Social Choice Theory
	Tau vs. Nomic
	P-DATALOG Language
	Proof of Theorem 2

